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Fig. 1. Expanding Lock Box. An intricate locking mechanism designed for 3D printing can be directly simulated with our algorithm. As the “key” turns, the
central spiral is rotated which in turn pulls in each of the five locking pins. When all pins have been retracted the bottom is able to freely fall. Our algorithm’s
intersection-free guarantee enables the automatic testing of designs without the need to tune simulation parameters. ©Angus Deveson.

We introduce the first implicit time-stepping algorithm for rigid body dy-
namics, with contact and friction, that guarantees intersection-free configu-
rations at every time step.

Our algorithm explicitly models the curved trajectories traced by rigid
bodies in both collision detection and response. For collision detection, we
propose a conservative narrow phase collision detection algorithm for curved
trajectories, which reduces the problem to a sequence of linear CCD queries
with minimal separation. For time integration and contact response, we
extend the recently proposed incremental potential contact framework to
reduced coordinates and rigid body dynamics.

We introduce a benchmark for rigid body simulation and show that
our approach, while less efficient than alternatives, can robustly handle a
wide array of complex scenes, which cannot be simulated with competing
methods, without requiring per-scene parameter tuning.
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1 INTRODUCTION
Simulations of rigid objects with contact resolution and friction are
ubiquitous in computer graphics and robotics. Rigid body models do
not deform. Equipped with just rotational and translational degrees
of freedom (DOF) they are a critical simplification enabling simula-
tions with orders of magnitude less DOF when material deformation
effects are either not significant or can be safely ignored.
An ideal rigid body simulator should take a scene description,

initial conditions, and a set of (possibly time-dependent) boundary
conditions, and integrate the system through time. This is unfor-
tunately not the case with existing algorithms, which require ex-
tensive parameter tuning to produce sensible results (Section 6).
In this work, we revisit the problem with a very different focus:
automation and robustness. We propose an algorithm that does not
require per-scene parameter tuning and can timestep large scenes
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with complex geometry, contacts, and friction interactions. Our
algorithm is the first rigid body simulator that guarantees a lack
of interpenetrations for all trajectories (and consequently on each
timestep) of a simulation.

Our algorithm extends the recently proposed IPC formulation [Li
et al. 2020] for large deformation dynamics to rigid body dynamics.
We rely on the same core ideas: model contacts via a set of barrier
functions, and use an incremental potential formulation to timestep
the system while ensuring no intersection at all intermediate stages
of the computation. These ideas are extended to rigid body dynam-
ics with reduced coordinates, where each body is parametrized by
a rigid transformation. Our formulation supports large time steps,
co-dimensional objects, and complex scenes with hundreds of inter-
linked rigid bodies in resting or sliding contact. We compare our
solution against the original IPC volumetric formulation (proxying
the rigid bodies using a material with high Young’s modulus) show-
ing that our approach is, as expected, more efficient on large scenes
due to the smaller number of degrees of freedom while being able
to exactly model rigid motion.
As part of our algorithm, we need to conservatively detect colli-

sions on a special type of curved trajectories obtained by linearly
interpolating rigid motions in rotation vector representation.
We propose the first conservative broad and narrow phase solu-

tion for triangle-point and edge-edge collision detection queries for
rigid body motion. The narrow phase query is based on a simple and
effective observation: the problem can be reduced to a sequence of
linear CCD queries withminimal separation. For the broad phase, we
propose to use interval arithmetic to compute conservative bound-
ing boxes that can be used in a standard BVH data structure.
The resulting algorithm handles complex scenes that cannot be

simulated with existing rigid body simulators, or that otherwise
require laborious fine-tuning and hand-tweaking of simulation pa-
rameters to achieve, opening the doors to new applications in graph-
ics, robotics, and fabrication. To quantitatively and qualitatively
compare our algorithm with competing solutions, we introduce
a benchmark for rigid body simulation, and compare our results
against four popular simulators (Bullet [Coumans and Bai 2019],
MuJoCo [Todorov et al. 2012], Chrono [Tasora et al. 2016], and
Houdini’s Rigid Body Dynamics (RBD) [SideFX 2020]).
To foster future research and make our results reproducible, we

attach a reference implementation of our algorithm, the benchmark,
and scripts to reproduce all results in the paper in the additional
material. This material will be released publicly as an open-source
project.
Our main contributions are:

• An IPC formulation for rigid body dynamic;
• An efficient, provably conservative CCD query for curved
trajectories;
• A benchmark for rigid body simulation.

2 RELATED WORK

2.1 Rigid Body Simulation
Dating back to Euler the rigid body model is a fundamental primi-
tive for physical modeling and simulation [Marsden and Ratiu 2013].

Fig. 2. Mechanisms. We demonstrate the robustness of our method on
various mechanisms with tight conforming contact. Top: a piston is attached
to a rotating disk and a static cylinder is used to constrain the motion of
the piston. Middle: A wheel with complex geometry rotates smoothly, but
results in intermittent motion on the connected wheel. Bottom: a bike chain
is attached to a kinematic sprocket. Each link is modeled using a realistic
joint consisting of a roller, pin, and two plates. ©Okan (bike chain), Hampus
Andersson (sprocket) under CC BY.

While it offers an exceedingly compact representation for body dy-
namics it comes with unique challenges as well. The first being
that tracing a piecewise rigid trajectory is much more challenging
than for a piecewise linear one. We cover the implications this has
for integrating collision detection with time stepping in detail in
Section 2.2. The second being that because rigid bodies are infin-
itely stiff, applied forces and contact responses are communicated
instantaneously across the material domain. This sensitivity has
long challenged the stability, accuracy, and effectiveness of time-
stepping methods and friction models applied to simulate multibody
systems [Stewart 2000].

Rigid-body contact simulation has been extensively investigated
in mechanics, robotics, and graphics [Baraff 1989; Bender et al. 2012;
Brogliato 1999; Hahn 1988; Mirtich and Canny 1995; Stewart 2000;
Witkin and Baraff 2001]. In graphics, beginning with pioneering
work of Baraff [Baraff 1991] rigid body contact has especially fo-
cused on linearized complementarity programming (LCP) models
[Anitescu and Hart 2004b; Anitescu and Potra 1997; Baraff 1994;
Kaufman et al. 2008; Lötstedt 1982; Stewart and Trinkle 2000; Trin-
kle et al. 1995]. Here the semi-implicit models employed enforce
contact constraints at the velocity level. This linearized constraint
enforcement then results in constraint drift and tunneling. In turn,
these artifacts can be partially mitigated by constraint stabilization
methods [Anitescu and Hart 2004a; Cline and Pai 2003; Erleben
2007; Moreau 1988] at the cost of physical accuracy.
LCP and related contact models can also equivalently be for-

mulated variationally [Moreau 1966; Redon et al. 2002b] and are
amenable to both primal and dual constructions [Macklin et al. 2020].
However, as these rely on velocity level arguments and linearized
contact constraints they can not be employed for IPC-based opti-
mization. Here, to extend IPC to rigid coordinates, we construct an
incremental potential for rigid bodies based directly on positions
and rotations rather than velocities.
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Focusing on efficiency and speed a wide range of faster, itera-
tive methods for rigid bodies have also been developed building off
of LCP [Erleben 2007; Guendelman et al. 2003], proximal [Erleben
2017], gradient descent [Mazhar et al. 2015], and decomposition [Co-
evoet et al. 2020; Hsu and Keyser 2010; Tonge et al. 2012] methods
to name just a few. With speed, however, comes additional accuracy
trade-offs [Kaufman et al. 2008]. In turn, this inherent loss of accu-
racy and the resultant impact on stability and robustness generally
requires compensation in the form of hand-tuning and often large
amounts of non-physical constraint stabilization.
A potential benefit of our work, which we leave as future work,

is the easy coupling of the original IPC formulation for deformable
bodies with our new IPC formulation for rigid bodies. Similar joint
formulations have been introduced, for example, Müller et al. [2020]
simulate rigid bodies through extended position-based dynamics
allowing them to easily couple soft and rigid bodies.

There is also a rich history of simulating rigid bodies with guaran-
tees. Time integration methods, starting with Moser and Veselov’s
[1991] celebrated work, focus on preserving geometric invariants of
free rigid bodies [Hairer et al. 2006]. Recent complementary work
[Smith et al. 2012; Vouga et al. 2017] focuses on designing meth-
ods for preserving geometric invariants (energy and momentum)
as well desirable collision properties for contacting rigid bodies.
For maintaining intersection-free rigid-body trajectories Mirtich
[2000, 1996] and Snyder et al. [1993] construct conservative, explicit
time-stepping methods. Mirtich [1996] explicitly forward steps rigid
bodies with conservative advancement to the time of contact and
later extends intersection-free resolution with efficient roll-backs
[Mirtich 2000]. Snyder et al. [1993] applies interval analysis to detect
collision between bodies. Further discussion and comparisons to
our CCD are provided in Section 2.2 and Appendix B. The use of an
explicit time-stepping scheme can extremely limit step size (and so
progress) as each collision must be detected and resolved before the
simulation can proceed. In comparison, our method is fully implicit
enabling large time-steps and global analysis of all collisions in a
time step simultaneously.

2.2 Collision Detection

screw
rotation vector

Fig. 3. Trajectories of in-
terpolating rotation vec-
tors can be wildly different
form the traditional screw
motion used by others.

We restrict our overview to contin-
uous collision detection (CCD) algo-
rithms for curved trajectories, as we
are interested in rigid motions, and
to CCD algorithms for linear trajec-
tories with minimal separation, as
our algorithm needs to tackle this
subproblem. We refer to Wang et al.
[2020] for an overview of CCD meth-
ods for linear trajectories without
minimal separation.

Curved. There has been extensive
research on curved CCD algorithms,
both in graphics and in robotics. The
trajectories considered are interpola-
tion of rotation matrices, screw motions, and spline curves. We
are not aware of any method designed to handle the trajectories

obtained interpolating rotation vectors that we consider in this
paper.

There are two major approaches: interval-based root-finding on
a system on non-linear equations and conservative advancement.

Interval-Based Root-Finding. One of the first approaches was in-
troduced in [Snyder 1992; Snyder et al. 1993], where they propose
to use an interval-based root finder to conservatively detect if there
are collisions and at which time. The approach is robust but slow,
as it heavily relies on interval arithmetic. To reduce the dimensions
in the domain, and correspondingly improve performances, Redon
et al. [2002a] proposes to use a similar strategy to only a part of
the problem and rewriting the CCD problem as a univariate system.
However, this approach leads to an infinite number of roots in degen-
erate cases, which dramatically slow down certain queries [Wang
et al. 2020]. A similar formulation, but for trajectories obtained by
interpolating quaternions is introduced in [Canny 1986]. We pro-
vide an explicit comparison against these approaches for both the
multivariate and univariate formulations in Appendix B.

Conservative Advancement. The most popular family of methods
is conservative advancement, which iteratively builds conservative
convex proxies for a substep of the trajectory [Mirtich 2000, 1996].
These methods have been proposed for spline trajectories [Pan
et al. 2012], trajectories with constant rotational and linear veloc-
ities [Tang et al. 2009], screw motion [Tang et al. 2011]. Different
primitives are used such as bounding boxes or spheres [Schwarzer
et al. 2005]. While most methods can be applied only to convex
primitives, there are extensions for nonconvex polyhedra [Zhang
et al. 2006]. In Zhang et al. [2007c], conservative advancement is
extended to articulated bodies, with a novel technique based on Tay-
lor expansion to compute tight approximations even for long body
chains. A useful tool for computing the conservative proxies is the
computation of distances between polyhedra. Specialized methods
for rigid body motions are introduced in [Zhang et al. 2007a,b] and
used within a conservative advancement framework to design a
CCD algorithm.

None of these techniques can directly handle the trajectories that
we consider in our work, obtained by interpolating rotation vectors.

Other Methods. In addition to the above classifications, Waveren
[2005] introduces a unique method for handling rotational contacts
between polyhedral features. By using Plücker coordinates and ac-
counting for errors in floating-point rounding, Waveren [2005] is
able to robustly detect and respond to collision in real-time applica-
tions. Unfortunately, this method is limited to screw motions and is
not immediately applicable to our current framework (interpolation
of rotation vectors).

Numerical Accuracy. Snyder [1992] and Snyder et al. [1993] con-
sider the problem of floating-point rounding, and can thus ensure a
correct result when a floating-point implementation is used. Other
methods are non-conservative when implemented using floating-
point arithmetic. Since any missed collision would be fatal in our
setting as it will break our interpenetration-free invariance, the only
method that we can use is [Snyder 1992; Snyder et al. 1993] both
on the original multivariate formulation, or on the one-dimensional
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formulation proposed in [Redon et al. 2002a] (and adapted to rota-
tion vector interpolation trajectories). We provide a discussion of
these two methods in Section 4.3 and provide a comparison with
our technique in Appendix B.

Minimal Separation Linear CCD.. Linear CCD with minimal sepa-
ration [Harmon et al. 2011; Lu et al. 2019; Provot 1997; Stam 2009;
Wang et al. 2020] detects collisions when two primitives are at a
small user-specified distance. In our work, we reduce the curved
CCD problem to a sequence of linear CCD with minimal separation.
While any of the methods above could be used, we opt for [Wang
et al. 2020], as it is the only one that is guaranteed to be correct
when implemented using floating-point arithmetic, and it also has
a public implementation available on GitHub. Our curved CCD
algorithm can also be extended to support conservative minimal
separation (Section 5), a feature that, to the best of our knowledge,
no other curved CCD method considered before and that is useful
in fabrication applications to ensure the satisfaction of clearance
constraints.

3 IPC OVERVIEW
We briefly overview the Incremental Potential Contact solver intro-
duced in [Li et al. 2020] to make our paper self-contained.

Li et al. [2020] proposes a novel way to handle large deformation
dynamics with frictional contact, reducing a single time step to the
minimization of a unconstrained non-linear energy:

𝑥𝑡+1 = argmin
𝑥

𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) + 𝐵(𝑥, 𝑑) + 𝐷 (𝑥, 𝑑), (1)

where 𝑥𝑡 is the set of nodal position, 𝑣𝑡 the velocities, 𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡 )
is an Incremental Potential (IP) for numerical time stepping [Kane
et al. 2000], 𝐷 is the friction potential, and 𝐵 is the barrier potential.
The later vanishes when primitives are further than a user-defined
geometric accuracy 𝑑 and diverges when two objects are in contact.
Here we first review the barrier potential, as we will need to extend
it in this work. In the next section we cover the necessary work
to extend the incremental potential for rigid bodies and so enable
the IPC formulation. For further details on the friction model and
solving we refer to Li et al. [2020].

Solver and Line Search CCD. IPC requires an initial state that
is free of self-intersections and uses a custom Projected Newton
solver to time step the system by minimizing Equation (1) to a user-
controlled accuracy. The solver ensures that the trajectories of all
surface primitive pairs are intersection-free during the optimization.
The guarantee comes from explicitly validating the linear trajectory
in every line search using a conservative linear CCD query: if the
CCD query returns a collision, the step length is reduced until a step
is possible. The solver requires the energy to be 𝐶2 (as the Newton
method requires the computation of the second derivatives) and
thus a careful definition for all terms of the energy is necessary.

Barrier Functions and Distances. Let C be a set containing all
non-incident point-triangle and all non-adjacent edge-edge pairs in
surface meshes. The barrier potential is then defined as:

𝐵(𝑥, 𝑑) = 𝜅
∑
𝑘∈C

𝑏
(
𝑑𝑘 (𝑥), 𝑑

)
, (2)

where 𝜅 is the barrier stiffness, 𝑑𝑘 is the mollified unsigned distance
between the 𝑘 pair of primitives (we refer to Li et al. [2020] for the
detail on the computation of the mollified distances 𝑑𝑘 between the
primitive pairs), and 𝑏 is a logarithmic barrier function defined as

𝑏 (𝑑, 𝑑) =
{
−(𝑑 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑.
(3)

We note that while C contains a number of pairs that is quadratic
with respect to the number of primitives, most of the pairs will
result in a zero contribution to Equation (3) as the support of the
barrier is local.

4 METHOD
Input. The input for our algorithm is a desired time step size ℎ, a

computational distance accuracy target, 𝑑 , and a set of 𝑛 rigid bodies.
Each rigid body 𝑖 has a set of 𝑘𝑖 vertices in axis-aligned, body-frame
local coordinates 𝑋𝑖 , a set of triangular faces 𝐹𝑖 , a mass𝑚𝑖 , and an
inertial frame 𝐼𝑖 . For each symbol, we use the subscript 𝑖 to identify
per-body quantities, and the same symbol without the subscript
denotes a stacked vector (or matrix, as appropriate) of that quantity
concatenated across the set of all simulated objects (e.g., 𝑋𝑖 give
the coordinates of the 𝑖-th body, while 𝑋 is the stacked coordinates
of all bodies). The position of each rigid body is then given by a
parametrization with a rotation vector1 𝜽𝑖 ∈ R3 and a translation
𝑞𝑖 ∈ R3 that together map each body from its local frame to world
coordinates with

𝜙𝑖 (𝜽𝑖 , 𝑞𝑖 ) = R(𝜽𝑖 )𝑋𝑖 + 𝑞𝑖 , (4)

Here, the function 𝜙𝑖 : R3 × R3 → R3×𝑘𝑖 maps the 𝑘𝑖 vertices
(in local coordinates) of the 𝑖-th body into world coordinates with
Rodrigues’s rotation formula R (see Equation (14)) mapping from a
rotation vector to a rotation matrix [Grassia 1998; Rodrigues 1840].
We initialize each simulation with a starting configuration of

rotations 𝜽 0 and translations 𝑞0 for all bodies. We require a non-
interpenetrating starting configuration and call any intersection
free configuration valid.

Output. Simulation output is a final valid configuration (𝜽 𝑡end , 𝑞𝑡end )
obtained by time integrating the rigid body system, and the corre-
sponding trajectory from (𝜽 0, 𝑞0) to (𝜽 𝑡end , 𝑞𝑡end ) guaranteed free
of intersections. The generated trajectory is piecewise linear in
generalized coordinates, (𝜽 , 𝑞), and is a curved trajectory in world
coordinates.

Overview. Our approach follows the same high-level ideas as Li
et al. [2020] (briefly summarized in Section 3 above). Our first step
requires us to formulate rigid body system time integrators as in-
cremental potentials (IP) – these are not previously available. With
rigid body IP in hand, we then can follow Li et al. [2020] by aug-
menting it with both a barrier and friction potential (remapped via
𝜙) to resolve contact and friction forces, respectively. Below we first
construct our incremental potential formulation (Section 4.1) and
then describe how we adapt line search, constraint set generation,
and a Newton-type solver to the rigid body time step problem. As
1This parameterization, also often called an “Euler vector”, gives a rotation around the
vector’s direction prescribed by an angle equal to the vector’s magnitude.
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a key part of this solution, during line search, we must process a
special type of curved trajectories for continuous collision detection.
For this, we develop a conservative CCD query in Section 4.3. We
provide an extensive comparison of our rigid body formulation and
the original formulation in [Li et al. 2020] Section 6.1.

4.1 Rigid Body Incremental Potential
Following Li et al. [2020], we construct a discrete energy whose
stationary points give an unconstrained time step method’s configu-
rational update. The Newton-Euler rigid body equations of motion
are naturally defined at the acceleration level, however, they don’t
(due to parameterization) naturally integrate up to an obvious vari-
ational formulation whose extremizers give an updated rotation for
a rigid body time step.

We then construct an IP formulation directly on rotation matrices
𝑄𝑖 that map points on rigid bodies 𝑖 from their local frames to a
frame axis-aligned with the world. At any time 𝑡 we then have
𝑄𝑡
𝑖
= R(𝜽 𝑡

𝑖
). Our first step is to recall that we can define angular

kinetic energy directly on rotation matrix velocities [Hairer et al.
2006] as 1

2 tr( ¤𝑄𝑖 𝐽𝑖 ¤𝑄𝑇
𝑖
) where

𝐽𝑖 =
1
2
diag(−𝐼𝑥𝑖 + 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼

𝑥
𝑖 − 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼

𝑥
𝑖 + 𝐼

𝑦

𝑖
− 𝐼𝑧𝑖 )

is the inertial matrix, and 𝐼𝑥
𝑖
, 𝐼𝑦

𝑖
, and 𝐼𝑧

𝑖
are components of the

inertial frame 𝐼𝑖 .
With the inertial matrix defined we now target flat equations of

motion that will allow us to compose IPs for arbitrary numerical time
integrators on𝑄𝑖 . To do so we simply apply constrained Lagrangian
dynamics with orthogonality𝑄𝑇

𝑖
𝑄𝑖 − Id = 0 as a constraint. We then

can directly apply standard form, constrained time integrators with
flat coordinates [Ascher and Petzold 1998]. With our construction,
we derive here the IP formulation for a rigid body system integrated
with implicit Euler. For our formulation, the constrained implicit
Euler time stepper is then

𝑄𝑡+1
𝑖 = 𝑄𝑡

𝑖 + ℎ ¤𝑄
𝑡
𝑖 − ℎ

2∇𝑉 (𝑄𝑡+1
𝑖 ) 𝐽

−1
𝑖 +𝑄

𝑡+1
𝑖 Λ𝐽−1𝑖 + ℎ

2 [𝜏𝑖 ] 𝐽−1𝑖 , (5)

𝑄𝑡+1
𝑖

𝑇
𝑄𝑡+1
𝑖 − Id = 0, (6)

¤𝑄𝑡
𝑖 =

𝑄𝑡
𝑖
−𝑄𝑡−1

𝑖

ℎ
, (7)

where Λ is the symmetric Lagrange-multiplier matrix for our con-
straint, 𝜏𝑖 are any external, applied torques to body 𝑖 at time 𝑡 and
𝑉 are any potential energies defined on 𝑄𝑖 . We use the notation [.]
to indicate the construction of the skew-symmetric (cross-product)
matrix2.
In turn, to create an implicit Euler rigid body IP we can next

convert this to a corresponding variational form

𝑄𝑖
𝑡
= 𝑄𝑡

𝑖 + ℎ ¤𝑄
𝑡
𝑖 + ℎ

2 [𝜏𝑖 ] 𝐽−1𝑖

𝑄𝑡+1
𝑖 = argmin

𝑄

1
2 tr

(
𝑄𝐽𝑖𝑄

𝑇 ) + tr
(
𝑄𝐽𝑖 (�̃�𝑡

𝑖 )
𝑇 ) + ℎ2𝑉 (𝑄),

s.t.𝑄𝑇𝑄 − Id = 0.

(8)

2

[𝑣 ] =
[ 0 −𝑣𝑧 𝑣𝑦
𝑣𝑧 0 −𝑣𝑥
−𝑣𝑦 𝑣𝑥 0

]

Then, for our entire rigid body system (presuming w.l.o.g. for
now no potentials) the implicit Euler IP for rotational coordinates is

𝐸𝑄 (𝑄) =
𝑛∑
𝑖=1

( 1
2 tr(𝑄𝑖 𝐽𝑖𝑄

𝑇
𝑖 ) − tr(𝑄𝑖 𝐽𝑖 (𝑄𝑖

𝑡 )𝑇 )
)
, (9)

and correspondingly for translational coordinates (directly from
standard implicit Euler) we have

𝑞𝑖
𝑡 = 𝑞𝑡𝑖 + ℎ ¤𝑞

𝑡
𝑖 + ℎ

2 (𝑔 +𝑚−1 𝑓𝑖 )

𝐸𝑞 (𝑞) =
𝑛∑
𝑖=1

( 1
2𝑚𝑖𝑞

𝑇
𝑖 𝑞𝑖 −𝑚𝑖𝑞

𝑇
𝑖 𝑞

𝑡
𝑖

)
,

(10)

where𝑔 is the acceleration due to gravity, 𝑓𝑖 are any external, applied
forces to body i’s center of mass at time t, and velocities are updated
by

¤𝑄𝑡 =
1
ℎ
(𝑄𝑡 −𝑄𝑡−1) and ¤𝑞𝑡 = 1

ℎ
(𝑞𝑡 − 𝑞𝑡−1).

Finally, the complete implicit Euler rigid body IP is

𝐸 (𝑄,𝑞) = 𝐸𝑄 (𝑄) + 𝐸𝑞 (𝑞),
Now that it is defined entirely in terms of 𝑄 and 𝑞 it can be, as per
our strategy, directly applied to swap for 𝐸𝑑 in Equation (1), when
we wish to apply rigid body coordinates. This gives us the following
constrained optimization problem to solve

(𝑄𝑡+1, 𝑞𝑡+1) = argmin
𝑄,𝑞

𝐸 (𝑄,𝑞) + 𝐵(𝜙 (𝑄,𝑞), 𝑑) + 𝐷 (𝜙 (𝑄,𝑞)) (11)

s.t. 𝑄𝑇
𝑖 𝑄𝑖 = Id, 𝑖 = {1, . . . , 𝑛}, (12)

where the constraint is necessary to ensure that minimizer 𝑄𝑡+1

gives rotation matrices.

Rotation Vector Parametrization. Our goal remains to use uncon-
strained optimization in order to apply as Newton-type solver with
line-search filtering and so robustly minimize the IP with guaran-
tees. To do so parameterizing rotations with the rotation vector, 𝜽𝑖 ,
allows us to then directly apply Rodrigues’ rotation formula to drop
equality constraints from Equation (12). This finally leads us to an
unconstrained optimization problem, and so gives us our rigid body
incremental potential for frictional contact

(𝜽 𝑡+1, 𝑞𝑡+1) = argmin
𝜽 ,𝑞

𝐸 (R(𝜽 ), 𝑞) + 𝐵(𝜙 (R(𝜽 ), 𝑞)) + 𝐷 (𝜙 (R(𝜽 ), 𝑞)) .

In turn, as we discuss next it can now be solved with a filtered
projected Newton solver.
Our rotation vector parametrization is then critical to obtaining

our unconstrained minimization form of the IP, as it avoids addi-
tional constraints and enables us to solve the optimization with an
unconstrained projected Newton solver. While alternatives exist
to minimize energies like our IP in the space of SO(3) [Owren and
Welfert 2000], it is not immediately obvious how to integrate our
barrier in these methods as they do not offer filtered line-search.
Adding differently scaled rotation vectors can require an in-

creased number of updates to change the axis of rotation. However,
do to warm-starting each solve from the last time step, this problem
never arises in practice even in scenes with large time step sizes.
We discuss a synthetic example of this more and provide a solution
(if ever needed) in Appendix E.
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4.2 Projected Newton Solver
Now that we have constructed an unconstrained barrier IP for rigid
bodies we apply the Newton-type solver proposed in [Li et al. 2020],
with a few modifications that are necessary to address numerical
challenges specific to the rigid body IP formulation.

Rodrigues’ Rotation Formula and its Derivatives. Rodrigues’ rota-
tion formula provides a way of computing a rotation matrix from a
rotation vector. Rodrigues’ rotation formula is commonly written as

R(𝜽 ) = Id + sin (∥𝜽 ∥)
[
𝜽

∥𝜽 ∥

]
+ (1 − cos(∥𝜽 ∥))

[
𝜽

∥𝜽 ∥

]2
, (13)

where R(0) = Id. For numerical stability (around 𝜽 = 0) we rewrite
R as

R(𝜽 ) = Id + sinc(∥𝜽 ∥) [𝜽 ] + 2 sinc2
(
∥𝜽 ∥
2

)
[𝜽 ]2, (14)

where

sinc(𝑥) =
{
1 𝑥 = 0
sin(𝑥)

𝑥 otherwise
.

Note, we compute values close to zero computed using a Taylor
series expansion (see Appendix A.1) [Grassia 1998].
While sinc is 𝐶∞, special care is needed to compute its gradient

and Hessian to avoid divisions by 0 (or small numbers). A full deriva-
tion of the derivatives of sinc(∥𝜽 ∥) is provided in Appendix A.2.

Additionally, when computing sinc(𝑥) with interval arithmetic a
naïve implementation using interval division can result in intervals
far outside the range of sinc(𝑥) (due to divisions of small numbers).
We instead utilize the monotonic domain near zero by computing
the real values (or a small interval to account for rounding errors)
of the interval’s endpoints. We discuss this strategy further in Ap-
pendix A.3.

Stabilization. Because of our transformation from axis-angle to
rotation matrix, the Hessian 𝐻 (𝐸𝑄 (𝑄)) may not be positive semi-
definite (PSD). Unlike in the elastodynamic case, a projection to PSD
is not balanced by the addition of a mass matrix and so can result in
a singular matrix. Instead, we first apply the unprojected Hessian
(inexpensive when compared to the finite element formulation in the
original IPC) and if the linear solve fails or the computed direction
is not a descent direction we apply standard offsetting by adding an
identity scaled by 𝜉 and solving. We continue the process, increasing
𝜉 by a factor of two until either the 𝜉 > 𝜉max = 1𝑒12 or the solve
is successful. In practice, this offset is rarely needed, and we never
reach 𝜉max in any of our experiments.

Evaluation of the Barrier Term 𝐵. The set C contains all possible
collision pairs. However, due to the local support of the barrier
functions, it is unnecessary to consider pairs whose distance is
larger than 𝑑 , as they do not contribute to the barrier potential 𝐵
(Equation (2)). In [Li et al. 2020], the pairs of primitives closer than
𝑑 are quickly detected using a spatial hashing data structure. For
the rigid case, we can exploit the rigidity of the objects to avoid
the construction of a hash grid for every evaluation of the barrier
potential.

We explicitly consider the relative position of a pair of rigid bodies
𝑎 and 𝑏. In the reference system of 𝑏, the relative position of the

vertices of 𝑎 are:

𝑠𝑏𝑎 = R(𝜽𝑏 )𝑇 (R(𝜽𝑎)𝑋𝑎 + 𝑞𝑎 − 𝑞𝑏 ) . (15)

We can thus build a bounding volume hierarchy (BVH) for every
rigid body independently made by one bounding box for every
primitive, only once when a model is loaded. We can then build
a bounding box for each primitive in 𝑎, enlarge it by 𝑑 , map it
to the reference system of 𝑏 using Equation (15), and then query
the BVH of 𝑏 to find candidate pairs for the set C. To ensure that
the check is conservative, we evaluate Equation (15) using interval
arithmetic [Tucker 2011] (note that an axis-aligned bounding box is
simply a triplet of one-dimensional intervals). Additionally, we also
use a scene BVH containing one bounding box for every body to
discard any pair of rigid bodies that do not contain potential pairs.

4.3 Curved CCD
To ensure that there are no intersections at any time during the sim-
ulation, we explicitly check for collisions during every line search.
Following the common approach used in linear CCD, we proceed
in two phases: a broad phase to quickly identify pairs of primitives
that are likely to be in contact, and the narrow phase, to certify
every candidate pair. We first introduce the special type of curved
trajectories that we consider in this work and then propose a broad
phase algorithm that takes advantage of the rigidity of the bodies.

Curved Trajectories. The trajectory of the vertices of a primitive
(i.e., a vertex, edge, or triangle) 𝑎𝑖 in a body 𝑋𝑖 are mapped from a
configuration (𝜽 0

𝑖
, 𝑞0

𝑖
) to a configuration (𝜽 1

𝑖
, 𝑞1

𝑖
), by

𝜙𝑎𝑖 (𝑡) = R(𝜽𝑖 (𝑡))𝑎𝑖 + 𝑞𝑖 (𝑡), 𝑡 ∈ [0, 1] . (16)

where

𝜽𝑖 (𝑡) = (1 − 𝑡)𝜽 0𝑖 + 𝑡𝜽
1
𝑖 and 𝑞𝑖 (𝑡) = (1 − 𝑡)𝑞0𝑖 + 𝑡𝑞

1
𝑖 .

Note that 𝜙𝑎𝑖 (𝑡) is non-linear in 𝑡 due to the presence of Rodrigues’
formula R.

Broad-Phase. To reduce the computational cost, we express the
trajectory in the reference system of one body extending Equa-
tion (15) to the time dependent case,

𝑠𝑏𝑎 (𝑡) = R(𝜽𝑏 (𝑡))𝑇 (R(𝜽𝑎 (𝑡))𝑋𝑎 + 𝑞𝑎 (𝑡) − 𝑞𝑏 (𝑡)) . (17)

We propose to use interval arithmetic [Tucker 2011] to automatically
compute a bound. That is, we evaluate 𝑠𝑏𝑎 (𝑡) over the interval
[0, 1] to obtain a bounding box for every point in 𝑋𝑎 representing
a conservative estimation of the trajectory with respect to 𝑏. The
bounding boxes can then be used in a standard spatial acceleration
data structure where we reuse the same BVH we built for evaluating
the barrier potential.

Narrow Phase Curved CCD. After identifying potential pairs of
primitives colliding, the goal of the narrow phase is to find the
earliest time 𝑡 (if any) for which a pair of primitives (either triangle-
point or edge-edge) intersect.
Consider the trajectory of a point 𝒑(𝑡) and the trajectories of

the three vertices of a triangle 𝒑1 (𝑡),𝒑2 (𝑡),𝒑3 (𝑡). The most direct
formulation of continuous collision detection is to explicitly look
for the earliest root of the following non-linear system of equations

𝐹vf (𝑡, 𝛼, 𝛽) = 𝒑(𝑡) −
(
(1 − 𝛼 − 𝛽)𝒑1 (𝑡) + 𝛼𝒑2 (𝑡) + 𝛽𝒑3 (𝑡)

)
, (18)
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for 𝑡, 𝛼, 𝛽 ∈ [0, 1], and 𝛼 + 𝛽 ≤ 1. If no root exists the two primitives
do not intersect. Similarly, consider the trajectory of two edges
whose vertices are 𝒑1,𝒑2 and 𝒑3,𝒑4

𝐹ee (𝑡, 𝛼, 𝛽) =
(
(1−𝛼)𝒑1 (𝑡)+𝛼𝒑2 (𝑡)

)
−
(
(1−𝛽)𝒑3 (𝑡)+𝛽𝒑4 (𝑡)

)
(19)

for 𝑡, 𝛼, 𝛽 ∈ [0, 1].

Baseline Solutions. To the best of our knowledge, there are no
existing algorithms developed specifically for our problem, that is
the particular formulation of 𝜙𝑎𝑖 (𝑡). However, there are two ap-
proaches that can be easily adapted. The first is the generic interval
root finder proposed by Snyder [1992], which can directly be used
to find roots of the non-linear system of equations (18) or (19). The
second is an adaptation for our problem of the screw CCD proposed
by Redon et al. [2002a], which uses a univariate formulation to im-
prove performances. Unfortunately, after experimenting with both
approaches, we conclude that they cannot be used for our purposes.
The former has a very long runtime due to the expensive interval
computation and large number of dimensions of the domain to sub-
divide, while the latter cannot handle degenerate cases linked to the
univariate formulation (see [Wang et al. 2020] for a more detailed
explanation of the intrinsic limitation of univariate formulations for
linear CCD). We provide a comparison between our algorithm and
the two baselines in Appendix B.

Linearization Error. We propose a novel algorithm based on the
following idea: if we can compute an upper bound 𝑏 of the maximal
error between a curved trajectory and its piecewise linear approx-
imation, then we can conservatively check for collisions using a
linear CCD with a minimal separation of 𝑏. Let us consider the
curved trajectory 𝜙𝑎𝑖 (𝑡) (16) of a single vertex 𝑎𝑖 ∈ 𝑋𝑖 . The time-
dependent distance between the curved trajectory and the linear
approximation is:

𝑒𝑎𝑖 (𝑡) = ∥𝜙𝑎𝑖 (𝑡) − ((1 − 𝑡)𝒑0 + 𝑡𝒑1)∥, 𝑡 ∈ [0, 1] . (20)

with 𝒑0 = 𝜙𝑎𝑖 (0) and 𝒑1 = 𝜙𝑎𝑖 (1). By evaluating 𝑒𝑎𝑖 over the
interval [0, 1] using interval arithmetic, we obtain our desired bound
𝑏. This construction can be extended to find a distance bound for all
points between two convex primitives by evaluating 𝑒𝑎𝑖 for every
vertex in both primitives and taking the maximum. Given the pair of
primitives and the bound𝑏 we conservatively check for intersections
using the linear minimal separation CCD proposed by Wang et al.
[2020], using the 𝐿∞ metric for minimal separation. This idea is
used in Algorithm 1 to adaptively refine the linear approximation
depending on the error bound.

Algorithm Description. The algorithm keeps track of the earliest
time guaranteed to be collision-free in a variable 𝑡0 (initially equal
to 0), which is incremented whenever the linear CCD is able to vali-
date a section of the trajectory (Line 23). The algorithm iteratively
subdivides the linear approximation, keeping track of the endpoint
of every segment in a stack 𝑡𝑠 . After a segment is retrieved from
the stack (Line 5), we compute the initial distance between the two
objects (Line 6) and an upper bound on the error of the linear ap-
proximation of the trajectory (Line 7). If the bound is larger than the
initial distance (Line 8) the linear CCD will find a collision at the be-
ginning of the time since the linear approximation is poor. We thus
refine the linear approximation. The parameter 𝛿 ∈ (0, 1) (Line 8)

Algorithm 1 contact, toi = CurvedCCD(𝑎𝑖 , 𝑏 𝑗 , 𝛿, 𝑁max)
1: 𝑡0 ← 0
2: 𝑡𝑠 ← {1}
3: 𝑁 ← 1
4: while 𝑡𝑠 ≠ ∅ do
5: 𝑡1 ← top(𝑡𝑠)
6: 𝑑𝑡0 ← 𝑑 (𝑡0, 𝑎𝑖 , 𝑏 𝑗 ) {𝑑 is defined in [Li et al. 2020, (18)-(19)]}
7: 𝑏 ← 𝑒𝑎𝑖 ( [𝑡0, 𝑡1]) + 𝑒𝑏 𝑗

( [𝑡0, 𝑡1])
8: if 𝑏 ≥ 𝛿𝑑𝑡0 and (𝑁 < 𝑁max or 𝑡0 = 0) then
9: 𝑡𝑠 ← 𝑡𝑠 ∪ {(𝑡1 + 𝑡0)/2)}
10: 𝑁 ← 𝑁 + 1
11: continue
12: end if
13: impact, toi← lccd(𝜙𝑎𝑖 (𝑡0), 𝜙𝑎𝑖 (𝑡1), 𝜙𝑏 𝑗

(𝑡0), 𝜙𝑏 𝑗
(𝑡1), 𝑏)

14: if 𝑡0 = 0 and toi = 0 then
15: 𝑡𝑠 ← 𝑡𝑠 ∪ {𝑡1/2}
16: 𝑁 ← 𝑁 + 1
17: continue
18: end if
19: if impact then
20: return true, 𝑡0 + toi(𝑡1 − 𝑡0)
21: end if
22: pop(𝑡𝑠)
23: 𝑡0 ← 𝑡1
24: end while
25: return false,∞

allows us to trade off the cost between the CCD and the refinement.
A value close to 1 will lead to minimal refinement, but potentially
more challenging queries for the linear CCD, while a smaller value
will preemptively refine the linear approximation, making the CCD
queries easier. We experimentally found that a value of 0.5 is a good
tradeoff (see the parameter study in Appendix C). To bound the
cost of the linear CCD and prevent overrefinement, we set an upper
bound 𝑁max on the maximal number of subdivisions (we use 1000
in our experiments). The bound is however disabled when 𝑡0 = 0,
as we need to have a strictly positive time of impact (ToI) to make
progress in the Newton optimization and we know that a non-zero
𝑡 always exists due to our barrier formulation. If the interval passes
the distance check, we apply linear CCD (Line 13), and we further
refine in case the linear CCD returns a ToI of 0 and if 𝑡0 = 0 as
this must be due to the poor approximation of 𝑏 since a non-zero
𝑡 always exist. If the linear CCD finds a collision we report it and
return, otherwise we continue with the next segment in the stack.
If we reach the end of the trajectory without finding a collision, the
algorithm terminates and reports that the trajectory is collision-free.
For linear CCD with minimal separation, we use [Wang et al.

2020] with default parameters.

Shared Earliest Time of Impact. As in [Li et al. 2020], we compute
an upper bound on the step size using the earliest time-of-impact for
a given step. To speed up this process, we follow the advice of Redon
et al. [2002a] who suggests reusing the earliest time-of-impact from
the previous CCD queries for the same step. This reduces the number
of queries and is achieved by replacing Line 2 with 𝑡𝑠 ← 𝑡earliest,
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Fig. 4. Bolt. A bolt spins inside a static nut under gravity. Without friction,
the bolt is quickly able to follow the threading and begins to rotate. ©YSoft
be3D under CC BY-SA 3.0.

where 𝑡earliest is the earliest time-of-impact for the current step
(initially 1).

Minimal Separation. To extend our algorithm to guarantee a min-
imal separation we make three minor modifications to our formula-
tion. First, we shift the input to our distance barrier (Equation (2))
by subtracting the minimum separation distance from the primitive
pair’s distance. Second, we inflate all bounding boxes used in the
broad-phase to account for the added minimum separation. Last, we
take advantage of the linear minimum separation CCD to add an
additional offset to the minimum separation (before Line 13 perform
𝑏 ← 𝑏 + 𝑑min).

4.4 Boundary Conditions
A kinematic rigid body moves under its own velocity but does not
respond to collision forces. We implement kinematic bodies using
an augmented Lagrangian (AL) based on the method of Li et al.
[2020] to enforce Dirichlet boundary conditions. For each kinematic
rigid body 𝑘 , we construct the AL from the two terms,

𝐸A,q (𝑞) =
𝜅A,𝑞

2
𝑚𝑘

𝑞𝑘 − 𝑞𝑡+1𝑘

2 − √𝑚𝑘𝜆
𝑇
A,𝑘 (𝑞𝑘 − 𝑞

𝑡+1
𝑘
)

𝐸A,Q (𝑄) =
𝜅A,𝑄
2

tr(𝑄𝑘 − �̂�𝑡+1
𝑘
) 𝐽𝑘 (𝑄𝑘 − �̂�𝑡+1

𝑘
)𝑇 )

− tr(Λ𝑇A,𝑘 (𝑄𝑘 − �̂�𝑡+1
𝑘
) 𝐽

1
2
𝑘
)

where (𝑞𝑡+1
𝑘

, �̂�𝑡+1
𝑘
) is the prescribed configuration at time 𝑡 + 1.

Following the algorithm of Li et al. [2020], we initialize the La-
grange multipliers to 𝜆A,𝑘 = 0 and ΛA,𝑘 = 0 and penalty stiffnesses
to 𝜅A,𝑞 = 103 and 𝜅A,𝑄 = 103. These potentials are then added to
Equation (12).
The convergence criteria of each time step optimization is then

modified to account for the satisfaction of the kinematic bodies’
motion. Concretely, we compute

𝜂𝑞 = 1 −

√√√∑
𝑘 ∥𝑞𝑡+1𝑘

− 𝑞𝑘 ∥2∑
𝑘 ∥𝑞𝑡+1𝑘

− 𝑞𝑡
𝑘
∥2

and

𝜂𝑄 = 1 −

√√√∑
𝑘 ∥�̂�𝑡+1

𝑘
−𝑄𝑘 ∥2𝐹∑

𝑘 ∥�̂�𝑡+1
𝑘
−𝑄𝑡

𝑘
∥2
𝐹

and converge iff the optimization’s stationarity criteria is satisfied
with 𝜂𝑞 > 0.999, and 𝜂𝑄 > 0.999 [Li et al. 2020].

Fig. 5. Punching Press.We designed two variations of a punching press
mechanism: one with loose joints (top row) and one with tight (bottom row).
By applying a force to raise the punch, our use of full rigid DOF instead of
articulated bodies allows us to model and test varying tolerance in joints.

If only stationarity is satisfied, we update the AL parameters.
For brevity we only describe the update scheme for 𝜅A,𝑞 , 𝜆A as the
others follow closely. If 𝜂A,𝑞 < 0.99 and 𝜅A < 108, then

𝜅A,𝑞 ← 2𝜅A,𝑞 .

Otherwise, for each kinematic body 𝑘 ,

𝜆A,𝑘 ← 𝜆A,𝑘 − 𝜅A
√
𝑚𝑘 (𝑞𝑖𝑘 − 𝑞

𝑡+1
𝑘
) .

Additionally, whenever the AL convergence criteria are satisfied,
we fix all prescribed DOF and remove the AL from Equation (12)
for the remainder of the optimization. This helps by removing un-
necessary stiffness in our objective function [Li et al. 2020].

5 RESULTS
Our algorithm is implemented in C++ and uses Eigen [Guennebaud
et al. 2010] for the linear algebra routines, libigl [Jacobson et al. 2018]
for basic geometry processing routines, and filib for interval arith-
metic [Lerch et al. 2006]. We run our experiments on a workstation
with two AMD EPYC™ 7452 Processors. The reference implemen-
tation used to generate the results is attached to the submission
and will be released as an open-source project. We provide a video
for every simulation shown in the paper as part of our additional
material.
We first present our results and postpone a comparison against

existing rigid body simulators to Section 6 and to a volumetric IPC
formulation in Section 6.1.

Rigid BodyMechanisms with Complex Geometry. The first example
is a bolt that spins under gravity inside a nut. This is a challenging
scene for many rigid body simulators (although others have shown
success [Wang et al. 2012; Xu et al. 2014]) due to the tight sliding
contacts on an extended curved area (Figure 4).
We show a collection of more complex mechanisms in Figure 2,

including a piston, a rotating wheel that generates intermittent
motion, and a bike chain. In all cases, we do not use any constraint
on the reduced coordinates.
Note that the contacts are reliably handled by our approach,

enabling us to experiment with variations in the mechanisms, for
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Fig. 6. Codimensional bodies. The IPC formulation allows us to easily
simulate codimensional objects. Top: A ball is dropped onto a chain net
composed of 1D codimensional edges. Bottom: A sphere of disconnected
codimensional planes and a point cloud ball roll into each other. Upon
contact, the geometry locks, and both spheres rock back and forth before
coming to rest.

Fig. 7. Spolling coin. A coin spolls (spins while rolling) on a surface with
friction (𝜇 = 0.2). As the coin falls it continues to rotate while only a single
point touches the ground. To accurately capture these high-speed dynamics,
we use a small timestep of ℎ = 10−4 s.

example by adding additional tolerance in the holes of a punching
press (Figure 5). Note that explicit collision modeling is necessary
to capture this effect.

Simulation for Fabrication. Our method can be used to design
and simulate complex mechanisms before real-world fabrication. To
mock-up this use case, we purchased the 3D model of a 3D printed
locking box from Maker’s Muse, and directly use the STL files in
our simulator (Figure 1). The mechanisms can be studied in our
simulation, where it is easy to modify the design and test it in a
virtual environment.

Codimensional Rigid Bodies. Our algorithm supports simulating
codimensional bodies. We show a card house composed of 2D codi-
mensional, rigid cards in Figure 10. 1D co-dimensional objects are
also supported and can be used, for example, to efficiently simulate
a large chain net (Figure 6 Top). As a stress test, we drop a heavy
ball on top of the chain net. We can even simulate 0D codimensional
point-clouds. As a demonstration, we roll a point cloud ball (with
friction) towards another ball composed of planar slices (Figure 6
Bottom).

Fig. 8. Wrecking ball. A stack of 560 boxes is hit by a wrecking ball made
from a chain of interlinked bodies.

Fig. 9. Anchor. A heavy anchor attached to a chain briefly falls under grav-
ity before being lifted by rolling the chain around an axle. Natural bunching
and kinking behaviors are visible. ©Animation Anchor Line (anchor) under
TurboSquid 3D Model License.

Large Angular Velocity. We can simulate objects moving at high
angular velocities to capture interesting real-world effects involving
rigid body objects, such as a spolling coin (Figure 7), with a timestep
of 10−4 s.

Large Numbers of Bodies. Our algorithm can stably simulate large
collections of rigid bodies, as demonstrated by a stack of boxes
displaced by a wrecking ball (Figure 8).
We can also stably simulate long chains of interlinked bodies.

We show an example in Figure 9, where a heavy anchor is lifted by
rolling up a chain composed of 21 individual links.

Friction. We repeat the arch scene experiment used to benchmark
the friction model in [Li et al. 2020], replacing the deformable yet
stiff blocks with rigid objects (Figure 11). The results are indistin-
guishable (see also Figure 19).

The Lewis is an interesting mechanism used to lift heavy bodies,
relying on static friction (Figure 12). As a final friction experiment,
we place a box on a spinning disk with four different coefficients
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Fig. 10. Codimensional card house.Wedesign a codimensional variant of
the standard frictional benchmark of Kaufman et al. [2008], where each card
is composed of only two triangles. The cards are briefly allowed to stably
come to rest (𝜇 = 0.9), before being impacted by two cubes. The top two
levels collapse, but the final floor is able to catch the cubes demonstrating
our ability to quickly handle transitions between static and dynamic friction.

Fig. 11. Arch. An arch composed of 101 rigid blocks is in equilibrium under
gravity due to friction forces.

Fig. 12. Lewis lifting mechanism. Utilizing friction and geometry the
Lewis is able to lift large weights. A pyramid-shaped piece is placed between
wedge-shaped pieces. When the center piece is pulled up the surrounding
pieces are pressed into the outer block. The center is moved kinematically
at 0.5m/s with 𝜇 = 0.3 and is able to lift a block 10 times its mass.

of friction. As the rotational velocity of the disk increases, the box
loses contact and flies away (Figure 13) for 𝜇 ≠ 1.

Packing for 3D Printing with Minimal Separation. The stability
of our algorithm over large time steps and the possibility to add
controlled minimal separation makes it ideal for packing multiple
objects within the bed of a 3D printer. A common way to solve this
problem is inflating the objects by the printer clearance and then
use bin packing [Fogleman 2017].

Our algorithm can be used as a simple alternative to packing for
3D printing (Figure 14): we can compute a packing of a collection
of objects by dropping them in a box and extending our algorithm
to ensure that the printer clearance is respected.

Fig. 13. Turntable. A block is dropped on an accelerating turntable with
four different coefficients of friction (𝜇 = 0, 0.1, 0.5, 1.0). With 𝜇 = 0, the
block rests on top of the table, slowly drifting. With 𝜇 = 0.1, the block
quickly catches and is flung away by the table. With 𝜇 = 0.5, the block is
able to hang on longer but eventually slides to the edge and falls off. With
𝜇 = 1, the block sticks to the table and remains in the same relative position
throughout the simulation.

Fig. 14. 3D packing. Based on the tolerance of Shapeway’s PA11 material,
we pack eight models into the bed of a 3D printer of size 290 × 290 × 600
mm, with a clearance of 1mm enforced by our minimum separation. (Inset)
We plot the minimum distance throughout the simulation showing that we
always maintain the desired minimum distance between objects. ©tjhowse,
blecheimer, Kacie Hultgren, Creative Tools, Dustin Sallings, Brad Pitcher,
Andy Lesniak, and Tony Buser under CC BY.

This is just a prototype, and more research will be necessary
to evaluate the effectiveness of this approach in practical applica-
tions and compare it with bin packing, especially since the runtime
of Wang et al. [2020] (and consequently of our curved CCD) in-
creases considerably for large minimal separation distances.

Scalability. Our reference implementation exploits parallelization
in the following algorithmic stages: energy gradients and Hessians
are constructed in parallel, all body pairs in the barrier and CCD
broad phase are evaluated in parallel, and the narrow phase CCD is
performed in parallel to compute the earliest time-of-impact. Overall,
this allows our algorithm to take advantage of modern multi-core
processors. We test the weak (i.e., we increase the complexity of
the scene as we increase the number of threads) and strong (i.e.,
we keep the scene the same as we increase the number of threads)
scaling of our method by simulating a chain of densely meshed links
(Figure 15).
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Fig. 15. Scalability.We test both the weak (left) and strong (right) scala-
bility on a chain of densely meshed links (bottom). For weak scaling, we
set the number of free links equal to the number of threads and plot the
runtime divided by the single link time. For strong scaling, we use a chain
of 64 links and plot the speed-up over the single-core time. In each case,
we plot the ideal value in grey. While our method greatly benefits from
parallelization we see diminishing returns after 16 cores and observe little
improvement when testing up to 64 cores.

6 BENCHMARK
We perform an extensive benchmark comparison on some of the
most popular rigid body simulators (Bullet, MuJoCo, Chrono, and
Houdini’s RBD), focusing on evaluating the methods’ ability on:
(1) maintaining stability, (2) avoiding interpenetration, and (3) pro-
ducing accurate dynamics. Our benchmark includes unit tests com-
posed of simple primitive geometries like tetrahedron and cubes
(Figure 16), degenerate test cases proposed by Erleben [2018] (Fig-
ure 17), and some of our more complex, large scale examples. In
general, existing methods are orders of magnitude faster than our
method, but fail severely even on simple scenes, depending on the
parameters. Additionally, we show that, even with extensive pa-
rameter tuning, these methods cannot simulate certain scenes. All
scripts with simulation parameters tested will be publicly released
as part of our open-source project.

Bullet. The primary method for modeling contacts between mov-
ing concave geometries in Bullet is via convex collision resolution
employing convex decomposition proxies for input mesh geome-
tries. Bullet provides automated construction of approximate convex
decompositions for meshes via V-HACD [Mammou 2020]. Hand-
crafted custom decompositions are often employed instead which
can provide better approximation of the geometry and so improved
collision proxies. In the following experiments we use input meshes
for convex geometries (all of the unit test and Erleben’s tests) or
else, for concave geometries, an expert-constructed manual decom-
position.

Bullet performs well on the unit tests and tests of Erleben [2018],
but generates interpenetrations at larger time steps (0.01 s). Bul-
let performs best when the timestep is not too large (the default
is 1/240 s and “several parameters are tuned with this value in
mind” [Coumans and Bai 2019]). We find that ℎ = 10−3 s works
for most scenes, but some scenes (e.g., five-cube stack and spikes)
require time steps as small as (10−4 s) to completely avoid interpen-
etrations. In the volumetric chain-net, one of our more complex
benchmark scenes, large time steps generate intersections and con-
straint drift that eventually lead to tunneling. A smaller time step

Fig. 16. Unit tests. A set of unit test scenes used to benchmark the accuracy
and robustness of each method. We show the initial configuration and the
resulting simulation using our method.

Fig. 17. Erleben’s degenerate test cases. Our method can easily handle
the challenging degenerate cases proposed by Erleben [2018].

(0.001 s) helps avoids tunneling artifacts, but small intersections still
occur.
We also test Bullet’s experimental collision handling between

arbitrary input triangle meshes directly (without convex decom-
position proxies) and find it fails on almost all unit tests and the
tests of Erleben [2018] using default parameters. We observe large
amounts of energy injected into the system as an effect of position
stabilization: once an intersection appears, the simulator quickly
pulls the objects which produces large velocities.

Additionally, we note that Bullet successfully manages to prevent
interpenetration in examples at larger dimensions. However, for
smaller scenes we see severe interpenetrations even at small time
steps. For example, we tested Bullet on a 0.1×-scale chain net scene,
and observed severe interpenetration and instabilities even with
ℎ = 10−4 s. This could certainly be related to Bullet’s design, as stated
in Bullet’s documentation, being tuned towork on scenes with larger
dimensions. Interestingly, we also note that Bullet simulates the
0.1×-scale chain net example roughly 8× slower than at the original
scale, reflecting Bullet’s parameters controlling collision detection
and activation distance with respect to scale.

MuJoCo. MuJoCo works well on almost all unit tests and Er-
leben’s test cases, without severe explosion or interpenetrations.
Note that, for this method, we do not report small intersections that
exist in almost all MuJoCo results as a failure since this is the ex-
pected behavior for the contact resolution used in MuJoCo. For the
tet-corner example, even with frame-rate time step size ℎ = 0.01 s,
MuJoCo successfully simulates the tetrahedron falling down into
the tight space. However, we found that MuJoCo fails on all our
large-scale examples independently from time step size. Nearly half

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.



183:12 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

of the examples crash the program, either because huge velocity or
bounding boxes are detected (suggesting explosion), or the contact
buffer is full and the slow progressive memory reallocation does
not help. Similar to Bullet, we find that MuJoCo runs the 0.1×-scale
much slower (more than 3×) comparing to the larger dimension
counterpart. Compared to Bullet, MuJoCo is generally several times
faster for the same time step sizes. We tried to avoid interpenetra-
tions on the 4 × 4 chain example by (1) swapping integrators from
Implicit Euler to RK4, (2) changing solver from Newton to PCG,
and (3) increasing solver iteration from 100 to 1000. None of these
changes avoided interpenetrations.

Chrono. Chrono provides two methods for rigid body contacts:
smooth contacts (SMC) and non-smooth contacts (NSC). SMC uses a
penalty-based formulation, so it is known to have intersections with
large time steps or velocities. NSC uses a complementarity-based
approach and is, therefore, more robust. We focus our benchmark
on the NSC model. Chrono also provides several solver and time-
stepper methods. We benchmark the Barzilai-Borwein solver and
projected implicit Euler time-stepper as we found they are the most
robust for a wide range of scenes and the documentation recom-
mends them for “fast dynamics with hard (NSC) contacts and low
inter-penetration” [Tasora et al. 2016].
Similar to Bullet, Chrono performs well on the unit tests and

Erleben’s test cases, but we find noticeable interpenetrations at large
time steps (ℎ = 0.01 s). In particular, sharp features and parallel edge-
edge contacts (e.g., five-cube stack or parallel-edge tetrahedrons)
are more prone to interpenetrations. Overall we find that Chrono is
robust at smaller time steps, and only the five-cube stack requires a
time step smaller than 0.001 s to avoid interpenetrations.

However, Chrono struggles in some of our more complex scenes.
For example, the bolt scene initially works as the bolt turns in the
nut, but after a short time they intersect and the bolt stops moving.
Testing with different time steps (ℎ = 10−2, 10−3, and 10−4 s), we get
the same results. In an effort to get the bolt to work we tested various
parameters and discovered adjusting the scale of the scene resolves
the problems. When we scale the scene by 10× (and so change
the overall physical system), we find Chrono performs remarkably
well and is able to simulate the bolt at a time step of 0.01 s without
interpenetration. Avoiding this kind of unintuitive parameter tuning
that is necessary to prevent intersections and produce plausible
results is a motivation of our work.

Houdini RBD. Since Houdini RBD (not the binding to Bullet) is
harder to script than the two former methods, we modeled only
three scenes: five cubes, bolt, and wrecking ball. For the five cubes
scene, the simulation quickly stabilizes without artifacts, but it fails
on resting contacts after a few seconds, and the stack starts to
collapse (even using a small time step of ℎ = 10−4 s). Improving over
Bullet and MuJoCo, Houdini successfully simulates the bolt scene,
in real physical dimensions (i.e., small since all units are in meters)
without explosion. However, the bolt intersects with the nut even
when the time step is set to ℎ = 10−4 s. Finally, for the wrecking
ball scene, Houdini does not support a plane geometry composed
of 2 triangles holding the large cube matrix, therefore we make the
problem easier by using a built-in ground plane. Still, just like in
the five cubes scene, the cube matrix collapses after becoming static

Fig. 18. High school physics friction test. We perform a simple test of
high school physics by placing a block on an inclined plane with a slope of
26.565◦. For a value of 𝜇 ≥ tan(26.565◦) ≈ 0.5, the friction force will counter
the acceleration due to gravity. We accurately replicate this by showing for
𝜇 = 0.49 the block slides and for 𝜇 = 0.5 the block does not slide.

(before being hit by the wrecking ball). For this scene, we further
tested with a higher resolution for the signed distance field used in
RBD for collision detection: However, the cube matrix still collapses.

Friction Tests. We compare the different frictionmodels by placing
a block on a slope at 26.565◦, which has a critical value for the
coefficient of friction at 0.5 (Figure 18). In our results, the block
does not move for 𝜇 = 0.5 and starts to slide at 𝜇 = 0.49. Bullet is
able to closely match the expected behavior: The block does not
move for a value of 𝜇 ≥ 0.505. MuJoCo requires a value of 𝜇 = 0.9
to prevent the block from sliding. Chrono perfectly matches the
expected results with a critical value of 𝜇 = 0.5. Houdini’s RBD
requires a value of 𝜇 = 0.7 to prevent the block from sliding.

For our arch test (Figure 11), Bullet’s convex collision handling is
able to reach a stable equilibrium, but for large time steps (0.01 s)
the blocks intersect. Bullet’s concave triangle mesh collision han-
dling, experiences large “ghost” forces that cause it to collapse even
for varying time step sizes (10−2, 10−3, and 10−4 s). With MuJoCo,
Chrono, and Houdini the arch is unable to support itself as large in-
tersections occur between the bottom blocks (tested with ℎ = 10−2,
10−3, and 10−4 s).

6.1 IPC
While not designed for rigid body simulations, the IPC algorithm
[Li et al. 2020] can handle very stiff materials, and it is thus possible
to use it to approximate dynamic systems of rigid bodies. While the
bodies are not exactly rigid when simulated with IPC, the major
advantage is that restitution effects are directly simulated (while
we do not account for them in our current rigid body formulation).
The disadvantage is that the interior of the objects needs to be filled
with tetrahedra, increasing the solve time, especially for complex
geometries. We show three representative scenes in Figure 19: in
the arch, there is no need to insert any internal vertices and IPC
is actually faster than the rigid version (two times slower), due
to the cheaper linear CCD. On the bolt and chain-net scenes, the
geometry is more complex, and the reduced set of coordinates of
the rigid body formulation makes our algorithm faster (2.8 and 7.0
times). In all scenes, the overall dynamic is very similar between
the two formulations. We provide a more detailed comparison over
a selection of nine scenes in Appendix D.
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Fig. 19. IPC comparison. Comparison of the original volumetric, de-
formable IPC formulation (using material parameters for steel: Young’s
modulus 𝐸 = 200GPa and Poisson ratio Poisson’s ratio 𝜈 = 0.3) and our
rigid body formulation. ©YSoft be3D (screw) under CC BY-SA 3.0.

7 LIMITATIONS AND CONCLUDING REMARKS
We revisited the rigid body simulation problem focusing on robust-
ness and automation. By introducing a new IP formulation for rigid
body dynamics and a new conservative curved CCD formulation,
we designed a system that can reliably simulate complex scenes,
with large time steps, and without parameter tuning.

Limitations. Our method has three major limitations. (1) The
robustness of the algorithm comes at a computational cost, our
algorithm is (two to three orders of magnitude) slower than other
rigid body simulators. (2) The current formulation does not preserve
energy. (3) Our current formulation does not provide direct control
for restitution.
While (1) is an intrinsic limitation, which could be ameliorated

with more code optimizations or the use of GPU accelerators, (2)
and (3) are very interesting venues for future work.

Future Work. Our work opens the door to robust rigid body sim-
ulation, over a wider range of geometries and contact scenarios.
While our algorithm is slower than competing methods, our method
requires no parameter tuning to generate feasible results, and there-
fore can be potentially used to generate simulation data in one shot
for reinforcement learning in robotics. In that setting, it would be
interesting to add support for articulated bodies, add support for
accurate actuators, and merge the deformable and rigid body for-
mulation to allow robots to interact with deformable objects. For
applications in graphics, it would be interesting to add additional
collision primitives, such as spheres, capsules, and boxes, to lower
the runtime in cases where geometrical accuracy is less important.

Concluding Remarks. To conclude, we believe our formulation
will foster the development of a new family of robust rigid body
simulations while supporting exciting simulation applications in
graphics, robotics, and digital fabrication.
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Fig. 20. Simulation statistics for all scenes presented in Section 5. We report the number of bodies, number of primitives, simulation parameters, and the
average timings and Newton iterations per timestep. All timings are generated on a machine with a 2x32-core 2.35 GHz AMD EPYC™ 7452 32-Core Processor
with 1TB of memory. Each simulation is limited to a maximum of 16 cores (* indicates up to 64 cores). The suffix ℓ indicates the value is relative to the world
diagonal. We also report friction parameters and the Newton convergence tolerance. Please refer to Li et al. [2020] for full definition of these parameters.
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(ϵ_d (m/s))
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(per timestep)
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(per timestep)
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A ROBUSTLY COMPUTING RODRIGUES’ ROTATION
FORMULA

A.1 Talyor Series Expansion of sinc
To avoid numerical issues when computing sinc(𝑥) we instead use

sinc(𝑥) =
{
𝑥4/120 − 𝑥2/6 + 1 |𝑥 | ≤ 𝜖
sin(𝑥)

𝑥 otherwise

where sinc( |𝑥 | ≤ 𝜖) is computed using a fifth-order Taylor series
expansion around zero.

A.2 Rodrigues’ Rotation Formula Derivatives
To avoid numerical issues in derivatives of Rodrigues’ rotation for-
mula (Equation (14)) we use a Taylor series expansion around 0. The
gradient of sinc(∥𝜽 ∥) is computed as

∇ sinc(∥𝜽 ∥) = 𝑔(∥𝜽 ∥)𝜽
with

𝑔(𝑥) =
{
𝑥4/840 + 𝑥2/30 − 1/3 |𝑥 | ≤ 𝜖𝑔

(𝑥 cos(𝑥) − sin(𝑥))/𝑥3 otherwise

where 𝜖𝑔 = 10−4. The Hessian of sinc(∥𝜽 ∥) is computed as

∇2 sinc(∥𝜽 ∥) = ℎ(∥𝜽 ∥)𝜽𝜽𝑇 + 𝑔(∥𝜽 ∥)Id
with

ℎ(𝑥) =
{
𝑥4/7560 − 𝑥2/210 + 1/15 |𝑥 | ≤ 𝜖𝐻

(−𝑥2 sin(𝑥) − 3𝑥 cos(𝑥) + 3 sin(𝑥))/𝑥5 otherwise

where 𝜖𝐻 = 0.1.

A.3 Interval Computation of sinc
Given an interval 𝑥 = [𝑎, 𝑏] we want to compute sinc(𝑥) while
avoiding exponentially large intervals around 0. We first start by
exploiting the evenness of sinc to compute

𝑦neg = sinc(𝑥 ∩ [−∞, 0]) = sinc(−(𝑥 ∩ (−∞, 0])) .
Now that our domain is from [0,∞), we utilize the monotonicity
of sinc to decompose 𝑥 into 𝑥 ∩ [0,𝑚] and 𝑥 ∩ [𝑚,∞) where𝑚 =

4.4934094579 is a conservative value lower value for the upper bound
of the monotonic sub-domain. The latter case can be computed as
normal using interval division because the values are not too small.
For sinc(𝑥 ∩ [0,𝑚]), we compute sinc as

𝑦monotonic = [ lower(sinc( [upper(𝑥 ∩ [0,𝑚])])),
upper(sinc( [lower(𝑥 ∩ [0,𝑚])]))]

where [.] indicates computing an interval containing a single value
to account for floating-point rounding. Finally, we combine all sub-
domain results using the hull of all ranges.

B COMPARISON FOR CURVED CCD
We compared our curved narrow-phase CCDwith the interval-based
root-finding methods of [Snyder 1992] and [Redon et al. 2002a].
Figure 21 contains a histogram of query timings, illustrating the
orders of magnitude improvement of our method over previous
works. This performance is due in part to the expensive nature
of interval arithmetic but also the use of multivariate root-finder
of in the case of [Snyder 1992] and degeneracies in the univariate
formulation of [Redon et al. 2002a]. This results in queries that
can take several seconds to process (our maximum time for point-
triangle queries is 0.02s and for edge-edge is 0.3s).

C EFFECT OF 𝛿
The parameter 𝛿 in our curved CCD controls the adaptive subdi-
vision of our trajectories and in turn the accuracy and runtime of
CCD. To demonstrate these effects we simulate the Piston (Figure 2)
with three different values of 𝛿 : 0.1, 0.5, and 0.9. We do not consider
a value outside of (0, 1) because our distances are all unsigned and a
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Fig. 21. CCD comparison. We compare our narrow-phase curved CCD
with the methods of [Snyder 1992] and [Redon et al. 2002a]. We extracted
43K point-triangle and 240K edge-edge queries from the first ten steps of
our bolt simulation (Figure 4) which has a good mix of linear and rotating
contacts between close conforming geometry. Our method is several orders
of magnitude faster than prior methods (x-axis is logarithmic).

value 𝛿 > 1 could result in the immediate termination of the linear
CCD (the initial distance is less than the minimum distance 𝑏).
For 𝛿 = 0.1, the CCD is forced to do unnecessary refinement

leading to a high runtime (611.6s with 227 Newton iterations).
For 𝛿 = 0.9, the CCD requires less refinement and is, therefore,

faster, but it is less accurate as the error 𝑏 is not tightly bound. This
inaccuracy results in a large number of Newton iterations (1162
iterations) which ultimately shifts the bottleneck and results in a
large runtime (742.6s).
We, therefore, choose to use the Goldilocks value of 𝛿 = 0.5

because it provides the best trade-off between runtime (130.6s) and
iterations (211 iterations).

D COMPARISON WITH IPC
We compared against IPC on a set of nine scenes with varying
geometric complexity and numbers of bodies. Figure 22 provides a
detailed summary of the total runtime and number of newton itera-
tions. For scenes with simple geometry (Arch (25 and 101 stones)
and Wrecking ball), our rigid formulation has little to no perfor-
mance advantage over IPC because of its cheaper linear CCD. For
more complex geometries (the chain net (4× 4 and 8× 8) and rolling
cone) IPC suffers due to the large number of DOF.

E INTERPOLATING LARGE ROTATION VECTORS
Although rotation vectors are invariant to multiples of 2𝜋 , adding
rotation vectors whose axes are not aligned is not. In fact, adding
a small rotation update to a large rotation vector will result in a
rotation axis close to the large rotation’s axis. For example, [0, 0, 0] +
[0, 1, 0] = [0, 1, 0] results in a rotation of 1 radian around the y-axis,
but [2𝜋, 0, 0] + [0, 1, 0] = [2𝜋, 1, 0] results in a rotation of

√
4𝜋2 + 1

radians around an axis ≈ [0.988, 0.157, 0].
In our experiments, we find this property has little to no effect

on the quality of simulation. In synthetic tests, however, this can
lead to an increased number of Newton iterations (more updates
necessary to move the axis of rotation) or small displacements that
can trigger early convergence in our Newton optimization (using
the same displacement-based convergence of Li et al. [2020]).
An easy fix to this problem, should the need ever arise, is to

substitute the resulting rotation vector 𝜽 = 𝜃𝒂 with (𝜃 mod 2𝜋)𝒂

Fig. 22. IPC comparison. We compare our method with the volumetric
IPC [Li et al. 2020] on a variety of scenes with varying geometric complexity
and number of bodies. IPC performs well (in some cases better) than our
method when the geometry is easily represented by only surface elements.
When the geometry is complex, however, our reduced DOF allows us to get
a performance gain.

Example runtime (s)
(IPC)

runtime (s)
(Rigid) speed-up iterations

(IPC)
iterations
(Rigid)

Pendulum 339.7 133.1 2.6x 10K 3K

Double pendulum 914.0 1559.9 0.6x 12K 4K

Arch (25 stones) 26.5 55.8 0.5x 2K 2K

Arch (101 stones) 238.3 487.8 0.5x 4K 5K

Wrecking ball 7179.8 5748.1 1.2x 9K 18K

Bolt 4031.0 1436.9 2.8x 24K 4K

Rolling cone 1184.2 150.9 7.8x 21K 16K

Chain net (4x4) 1369.9 99.8 13.7x 4K 3K

Chain net (8x8) 9950.5 1420.9 7.0x 5K 5K

at the end of the timestep. It is important to only do this at the end
of the timestep to avoid discontinuities in our potential during the
optimization.
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