
Technical Supplement to Incremental Potential Contact: Intersection-
and Inversion-free, Large-Deformation Dynamics

MINCHEN LI, University of Pennsylvania & Adobe Research
ZACHARY FERGUSON and TESEO SCHNEIDER, New York University
TIMOTHY LANGLOIS, Adobe Research
DENIS ZORIN and DANIELE PANOZZO, New York University
CHENFANFU JIANG, University of Pennsylvania
DANNY M. KAUFMAN, Adobe Research
ACM Reference Format:
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis
Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020.
Technical Supplement to Incremental Potential Contact: Intersection- and
Inversion-free, Large-Deformation Dynamics. ACM Trans. Graph. 39, 4, Arti-
cle 49 (July 2020), 6 pages. https://doi.org/10.1145/3386569.3392425

Contents

Contents . 1
1 Smoothing . 1
2 Barrier Continuity and Testing 1
3 CFL-inspired Culling of CCD 1
4 Conservative CCD 2
5 Equality Constraints for Moving Collision Objects

and Time-Varying Boundary Conditions 3
6 Adaptive Barrier Stiffness 3
7 Distance Computation Implementation 4

7.1 Point-point and point-edge constraint du-
plications 4

7.2 Nearly parallel edge-edge distance 4
8 Tangent and Sliding Modes 4
9 Friction Implementation 5
10 Squared Terms . 6
References . 6

1 SMOOTHING
Let f (x) be a function we wish to smooth. It is C1 continuous ev-
erywhere except at x = a where it is only C0 continuous. Applying
a function д(x) that is C1 continuous everywhere with д(a) = 0,

Authors’ addresses: Minchen Li, University of Pennsylvania & Adobe Research,
minchernl@gmail.com; Zachary Ferguson; Teseo Schneider, New York University;
Timothy Langlois, Adobe Research; Denis Zorin; Daniele Panozzo, New York Univer-
sity; Chenfanfu Jiang, University of Pennsylvania; Danny M. Kaufman, Adobe Research,
dannykaufman@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART49 $15.00
https://doi.org/10.1145/3386569.3392425

we have a smoothed function f (x)д(x) that is C1 continuous every-
where. For x , a we have (f (x)д(x))′ = f ′(x)д(x)+ f (x)д′(x) isC0

continuous everywhere. At x = a, the left and right derivatives of
f (x)д(x) are then

lim
x→a−

(f (x)д(x))′ = lim
x→a−

f ′(x)д(a) + f (a)д′(a),

lim
x→a+

(f (x)д(x))′ = lim
x→a+

f ′(x)д(a) + f (a)д′(a).
(1)

As f (x) isC0 continuous atx = a, limx→a− f
′(x) and limx→a+ f

′(x)
are both bounded. Then with д(a) = 0 we then have left and right
derivatives of f (x)д(x) both equal f (a)д′(a) at x = a,

lim
x→a−

(f (x)д(x))′ = lim
x→a+

(f (x)д(x))′ = f (a)д′(a) (2)

Thus (f (x)д(x))′ is likewise C0 continuous at x = a and f (x)д(x) is
correspondingly C1 continuous.

2 BARRIER CONTINUITY AND TESTING
The continuity of our C2 barrier function is confirmed when d < d̂ ,
as ∂b

∂d = (d̂ − d)(2 ln d
d̂
− d̂

d + 1) and ∂2b
∂d2 = −2 ln d

d̂
+ (d̂ − d) d̂+3d

d2

both vanish as d → d̂ . Thus the left and right derivatives of b at
d = d̂ are both equal at zero up to 2nd order.

Our motivation for applying a C2 clamped barrier rather than a
less nonlinear, but still smooth, C1 barrier is to provide 2nd-order
derivatives suitable for our Newton-type solver. Thus it is genralluy
better to have a continuous Hessian for improved convergence
[Nocedal and Wright 2006]. Nevertheless, here we also provide an
ablation study applying all both C0 (b = − ln(d/d̂)) and C1 (b =
(d − d̂) ln(d/d̂)), along with our final choice of our C2 (b = −(d −
d̂)2 ln(d/d̂)) barrier in IPC on a set of examples in Figure 1.

From the results we see that for the C0 barrier, optimization can
be non-convergent. Here this can be a result if the local minima is
right inside the clamped region of the barrier, where the gradient
does not change smoothly – here intermediate values may not be
found to balance terms so decrease the total gradient. While, in
comparison to C1, our C2 barrier is generally 5%–10% faster due
to the continuity of the Hessian – this is reflected in less iteration
counts.

3 CFL-INSPIRED CULLING OF CCD
As IPC requires performing CCD for every Newton iteration, CCD
clearly becomes a bottleneck. Therefore we propose a novel CFL-
inspired culling strategy to accelerate CCD.

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3386569.3392425

49:2 • Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman

Examples C0
iters, t (s) / time

step

C1
iters, t (s) / time

step

C2 (IPC)
iters, t (s) / time

step
mat on knives 5.51, 2.16 5.59, 1.43 5.47, 1.40

2 mats40x40 fall NC 26.83, 10.64 26.17, 10.48

octocat on knives NC 9.29, 4.21 7.73, 3.76

sphere1K roller NC 47.64, 9.41 45.22, 9.02

mat40x40 twist (10s) 7.74, 1.93 8.04, 2.07 7.56, 1.89

sphere1K pin-cushion 12.82, 1.27 9.22, 0.75 8.93, 0.69

rods630 twist (10s) 6.65, 1.05 3.05, 0.38 3.07, 0.40

Barrier ablation

Fig. 1. Ablation study on barrier functions with different continuity.
NC means not converging after 10000 PN iterations when solving a certain
time step.

Recall that our culled constraint set contains all surface primi-
tive pairs with distances smaller than d̂ . Thus all remaining primi-
tives outside the culled constraint set have farther distances lower-
bounded by d̂ . We place all vertices participating in these primitives
in a set F . At each iteration i with a search direction pi , we find
the index ℓ of the simulation node with the largest component in p
(i.e., its effective search-direction “velocity”) among all remaining
node pairs, ℓ = argmaxκ ∈F | |pik | |. We then compute a conservative
bound on the largest-feasible step size for surface primitives not in
Ĉ as

αF =
d̂

2| |pi
ℓ
| |
. (3)

We then apply conservative CCD (see below) to the remaining
primitive pairs in Ĉ(x i), obtaining a large feasible step size, α

Ĉ
,

for that set. Then α0 = min(αF,α Ĉ) is our maximum feasible step
size for iteration i . We then apply α0 as starting step size to bootstrap
backtracking for Newton iteration i and so ensure decrease with
feasibility.
Computing large, feasible step sizes in this way effectively re-

duces CCD cost by two-orders of magnitude. However, for scenes
that contain high speed motions, αF can be overly conservative
(smaller than needed) which then would increase iteration counts
and so cause energy related computations to increase overall cost
unnecessarily.
Thus we adapt by balancing between applying full CCD for all

candidate pairs provided by spatial hash and applying our CFL-like
strategy. Here we will designate the exact feasible bound computed
from applying CCD to all primitive pairs in the spatial hash as αS .

In each step we first compute αF and α
Ĉ
– they are both efficient

and inexpensive to find. Next we observe that the culled bound
α
Ĉ
is often very close to the exact bound αS , while computing

this exact bound is generally one-third of the total timing cost
in a single iteration. We thus proceed by computing αS if αF <
1
2α Ĉ . Otherwise we apply our CFL-type bound and apply α0 =
min(αF,α Ĉ) .
We thus avoid overly restrictive step sizes when αF and α

Ĉ
are

already quite close – meaning their minimum should also be quite
close to αS . In practice we observe that our CFL-like assisted CCD

culling strategy provides a 50% speed-up for all CCD related costs
with nearly the same iteration counts. Ovxerall this results in an
average 10% speedup for IPC; see Figure 2.

CCD ablation

Examples full CCD
iters, t (s) / time step

CFL combined (IPC)
iters, t (s) / time step

full CCD
CCD related Timing (s)

CFL combined (IPC)
CCD related Timing (s)

mat on knives 5.34, 1.66 5.47, 1.40 97.50 47.25

2 mats40x40 fall 23.22, 10.21 26.17, 10.48 273.38 162.10

octocat on knives 6.99, 3.92 7.73, 3.76 206.61 129.93

sphere1K roller 49.38, 9.89 45.22, 9.02 482.13 394.01

mat40x40 twist (10s) 7.37, 2.13 7.56, 1.89 147.60 62.91

sphere1K pin-cushion 8.35, 0.77 8.93, 0.69 37.25 19.61

rods630 twist (10s) 3.04, 0.47 3.07, 0.40 23.89 9.13

Fig. 2. CCD strategies ablation.

4 CONSERVATIVE CCD
CCD is generally applied to compute a time of impact corresponding
to a step size that would bring distances between primitives to 0.
In our barrier setting this "largest feasible step size" needs to be
made conservative by backing away from an exact zero distance.
A simple strategy would be a conservative rescaling with a factor
c ∈ (0, 1); e.g., by starting the line search at 0.5 or 0.9 of the total step
along the descent direction. However, for the CCD computations
rounding error can be severe for the tiny contacting distances we
allow and so even small naive scaling factors (e.g., 0.1) can allow
unacceptable intersections in such cases while in others is a much
too conservative bound unnecessarily slowing convergence.

Rather than directly finding and then conservatively rescaling a
CCD-computed step length that takes us to intersection we directly
compute via CCD a step size along pi that will bring primitives to a
distance of (1−c)dc > 0. Here dc is the current distance between the
primitives. Standard CCD libraries 1 directly provide this option, e.g.,
exposed as an η parameter. In turn this modifies coefficients of the
polynomial equations solved during CCD, and effectively reduces
numerical rounding errors that cause issues for direct scaling. In our
implementation we apply c = 0.8 between mesh primitives, c = 0.9
for mesh-to-plane, and similarly c = 0.8 for computing the large
feasible step size to avoid element inversion when barrier elasticity
energies, e.g., neo-Hookean, are applied.

Finally, to ensure we remain intersection- and inversion- free at
each step. We apply a post-step check whenever nodal positions
are displaced (e.g. line search and initial movements of boundary
conditions and collision objects. These include the edge-triangle
intersection check filtered by our spatial hash and a volume check
for every tetrahedral element. In exceedingly rare cases when an
edge-triangle intersection or negative volume are detected, we half
the final step size bound.

1we use https://github.com/evouga/collisiondetection

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

https://github.com/evouga/collisiondetection

Technical Supplement to Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics • 49:3

5 EQUALITY CONSTRAINTS FOR MOVING COLLISION
OBJECTS AND TIME-VARYING BOUNDARY
CONDITIONS

In many scenarios, e.g., scripting animations, kinematic objects, and
engineering tasks, scripted kinematic collision objects (CO) and/or
moving positional (Dirichlet-like) boundary conditions (BC) are
required. Contact algorithms generally handle these functionalities
by either directly prescribing and updating nodal positions of CO/BC
nodes at start of each time step, or interpolating them in substeps
across a step. Remainder of simulation DOF are then solved w.r.t.
the prescribed nodes being fixed at “current” positions. However,
such strategies are extremely limiting, with simulations generally
restricted to small time step sizes, speeds, and/or deformations as
the BO and/or CO become faster and more challenging. For example,
directly prescribing CO or BC nodes can often generate tunneling
artifacts, and for moving BC, simulations can often fail simply by
inverting elements when barrier energies like neo-Hookean energy
are applied. To address these issues we formulate scripted dynamic
BC and CO as equality constraints in IPC. This simultaneously
ensures that intersections (and inversions) are avoided even while
scripted motions are applied at large time step.
We start by computing the prescribed nodal positions at the

beginning of each time step, and then apply CCD and element
inversion detection to find a large feasible step size towards the
prescribed position from the current one (see above).
If it is safe to apply them fully without causing intersection or

inversion, we simply update prescribed nodal positions, solve the
remainder of simulation DOF and are done. However, if our feasible
step size is smaller than taking a full step (we use a criterion of 0.999),
we first move the prescribed nodes as far as we can conservatively
(see Section 4) and then add new equality constraints for each of
these prescribed nodes provided by either CO or BC scripting.
As in our treatment of intersection-free inequality constraints,

we build an unconstrained form for each by applying an augmented
Lagrangian. For every such prescribed node, we add a Lagrangian
and a penalty potential. We initialize each Lagrange multiplier to 0
and each penalty stiffness to 106. Concretely, we add an energy

−
√
mkλ

T
A,k (xk − x̂k) +

κA
2 mk | |xk − x̂k | |

2 (4)

to our barrier-form incremental potential for each prescribed node
k with corresponding destination x̂k in the current time step, if any
of the prescribed nodes could not reach its destination during our
start-of-time-step test.

We measure satisfaction of BC/CO node constraints at each New-
ton iteration i by calculating their total in-time-step progress as

ηA = 1 −

√√√∑
k | |x̂

t+1
k − x ik | |

2∑
k | |x̂

t+1
k − xtk | |

2 , (5)

where x̂t+1 is the prescribed BC/CO positions for time step t + 1.
Then, whenever a current iterate is both close to satisfying station-
arity, via the stopping criteria, and progress, with ηA < 0.999, we
either increase the BC/CO penalty stiffness or else update the La-
grange multipliers, via the first-order update rule, see Algorithm
1 below. Finally, whenever ηA ≥ 0.999, we fix all prescribed nodes

at current position and solve for remaining DOF in order to avoid
unnecessary slow down of convergence due to added stiffness.

Algorithm 1 Augmented Lagrangian Update Rule
1: for each PN iteration i do
2: ...
3: if 1

h | |p
i | |∞ < max(10−2l, ϵd) and ηAL < 0.999 then

4: if ηAL < 0.99 and κAL < 108 then
5: κAL ← 2κAL
6: else
7: for each constrained node k do
8: λAL,k ← λAL,k − κAL

√
mk (x

i
k − x̂

t+1
k)

For codimensional surface and segment collision objects their
nodal mass is computed by estimating their nodal volume as the
half sphere with diameter being the average length of the incident
edges. For point collision objects we set their mass to be the average
nodal mass of the simulated objects. Alternatively, simply setting
all codimensional nodal masses to be the average of the simulated
objects should also be fine. These estimated masses are only used
for moving codimensional collision objects and they do not affect
any physical accuracy.

6 ADAPTIVE BARRIER STIFFNESS
Stiffness, and so difficulty in solution of the barrier comes from two
sources: d̂ and likewise κ. As we can improve accuracy by directly
decreasing d̂ , this frees κ to adaptively condition our solves for
improved convergence.
A feature of our barrier framework is that the estimation of La-

grange multipliers are efficiently self-adjusted by the constraint
values, in our case, the dk ’s. However, if κ is not set appropriately,
the contact primitives would either need to get extremely close to
get enough repulsion (barrier gradient) when κ is too small, or need
to get a distance right below d̂ for a small repulsion if κ is set too
large, both resulting in slow convergence because of ill-conditioning
and nonsmoothness. Thus adaptively setting and/or adjusting κ is
essential.

Intuitively, the smallerdk is, the better the complimentarity condi-
tion is satisfied. This is certainly true from optimization theory, but
is troublesome in numerical computation. In numerical optimization,
since double precision floating point number is used, when dk gets
tiny, the rounding errors will significantly slow down convergence
and even result in incorrect intermediate computations. Therefore,
we must also prevent dk from being too tiny.

If we view d̂ as a control on the upper bound acting distance
of our contact forces, κ can be seen as an indirect control on the
lower bound of the acting distance as larger κ can provide the same
amount of “repulsion” at a larger distance, avoiding the need to
push distances to become too tiny. Tiny distances not only make
CCD less robust and make the optimization less efficient in our
numerical simulation, but also are not physically reasonable in
science. Generally speaking, the space between the nucleus of two
bonded atoms is around 10−10 meters. There is no way for two
macroscopic touching objects to get to that close. On the other hand,

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

49:4 • Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman

recall that the energy gradient of our optimization is

д(x,κ, d̂) = ∇E(x) + κ
∑
k

∂b

∂dk
∇dk (x, d̂), (6)

where at subproblem convergence, the IP gradient ∇E(x) balances
with the barrier gradientκ

∑
k

∂b
∂dk
∇dk (x, d̂). In addition, the barrier

stiffness κ also influences the condition of the energy Hessian. Thus
we adapt barrier stiffness strategy based on balancing the two gradi-
ents, iteratively increasing κ when needed, and applying lower and
upper bounds obtained from conditioning analysis on the Hessian.
Here dk can then avoid being too small or too close to d̂ to provide
improved convergence regardless of d̂ , material, h, and our other
input settings change.

The idea of balancing gradients can be traced back in optimization
literature [Nocedal and Wright 2006] for estimating appropriate ini-
tial stiffnesses of barriers. In our case, we solve argminκ | |д(x j ,κ, d̂)| |2
which gives us −дc · ∇E(x)/| |дc | |2 (where дc =

∑
k

∂b
∂dk
∇dk (x, d̂))

at start of each time step to obtain an estimate of κ that seeks to
balance the two gradients at x j . However, we observe that the ef-
fectiveness of this balancing term is highly dependent on the x j
applied. It can be quite far from the configuration at solution and so
potentially can leads to poorly scaled or even negative values for κ.
Thus, we extend our analysis from the balancing gradients to addi-
tionally include conditioning of the Hessian. This, in turn, obtains
an effective estimate to provide a lower bound of κ in support of
the gradient balancing strategy.
Our analysis seeks to keep the scaling of the diagonal entries

of the Hessian, at small distances, close to the mass. Specifically, a
scaling characterization of the Hessian diagonal in ∇2b at d = 10−8l

is easily estimated by taking its first term ∇dT ∂2b
∂d2∇d in point-point

formula as

c∇2b = (| |∇d
T | |2
∂2b

∂d2)|d=10−8l = 4 × 10−16l2
∂2b

∂d2 (10−8l).

We then set the lower bound of κ to provide at least 1011 times of
the average lumped nodal mass m̄ on the diagonal entries when
d = 10−8l and so enable production of sufficient repulsion at larger
distances, that is

κmin = 1011m̄/c∇2b

Note that our κ lower bound will be different for different d̂ , effectly
capturing the curvature change of the barrier.With this lower bound,
we now can safely use the gradient scheme with bounded κ value.

Distance can still become small if resultant stress or applied com-
pression (e.g, BCs) in the scene are extreme. We thus add an addi-
tional, final κ adjustment that doubles κ, when needed, in between
Newton iterations. After every Newton iteration, if we detect that
there are contact pairs having a characteristic distance smaller than
minimum d̂ϵ = 10−9l both before and after this iteration, and the
distance is decreasing in this Newton iteration, we double the κ
value. Although we do not observe divergence of the adapted κ
values we apply a fixed upper bound of κmax = 100κmin.

To summarize, our adaptive barrier stiffness strategy is:
(1) At start of each time step, compute κд giving smallest gradi-

ent, and set κ ← min(κmax,max(κmin,κд)).

(2) After each Newton iteration, if any contact pair has distance
smaller than d̂ϵ both before and after this iteration, and the
distance is decreasing, set κ ← min(κmax, 2κ).

7 DISTANCE COMPUTATION IMPLEMENTATION

7.1 Point-point and point-edge constraint duplications
As we discuss in our paper many point-triangle and edge-edge
distances can and will reduce to point-point or point-edge distance
in computation. Thus there can be multiples of exactly the same
point-point and/or point-edge stencils in our constraint set. While
it is tempting to simply either ignore or remove these duplicates,
neither strategy is effective. Ignoring duplication in code can lead to
significant redundant computation of the same force and Hessian.
On the other hand removing them introduces inconsistency into our
objective energy, leading to poor convergence or even divergence
over iterations. Instead, we track duplicate stencils, computing their
energy, gradient, and Hessian evaluations only once for each distinct
stencil and then multiply their entries appropriately so that all terms
are correctly applied but still avoiding redundant and expensive
computation.

7.2 Nearly parallel edge-edge distance
When computing distances between two nearly parallel edges using
the edge-edge plane distance formula (22, main paper), numerical
rounding errors will generate huge gradient and Hessian values,
and even results in wrong distances (Figure 3) because of the ill-
defined normal, making our optimization intractable with double
precision floating point numbers. Therefore, we check the angle
between edges, forcing each case to reduce to the most appropriate
point-point or point-edge constraints if the sine value is smaller than
10−10. This clearly makes the distance functionC0 continuous again
at the threshold. However, the nonsmoothness is nearly negligible
(Figure 3), while our multiplying energy smoother ek ,l (x) is also
extremely small when edges are nearly parallel. In practice we find
this robustly avoids numerical issues and converges well for all
benchmark tests; see Section 7 of our paper.

8 TANGENT AND SLIDING MODES
After reducing the general point-triangle, and edge-edge distances
to one of the closed form formulas, see Section 6 in our paper, we
can directly compute the sliding basis operators for each of the four
types of contact pairs required for computing friction.
We start by defining the basis, Pk (x) ∈ R3×2, formed by the two

orthogonal 3D unit-length column vectors spanning the tangent
space of the contact pair k , and a selection matrix Γk ∈ R3×3n which
computes relative velocity vk = Γkv of each contact pair k . Then
we can define the sliding basis Tk (x) = ΓTk Pk (x) that maps tangent
space relative velocity or displacement to the stacked global vector.
Here we then list the construction for P and Γ for each contact
distance type:

Point (x0) – Triangle (x1x2x3).

Pk (x) =
[

x2−x1
| |x2−x1 | |

,n × x2−x1
| |x2−x1 | |

]
(7)

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

Technical Supplement to Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics • 49:5

0 0.5 1
EE angle sine value 10-14

0

0.05

0.1

0.15

0.2

EE
 d

is
ta

nc
e

(n
um

er
ic

al
)

0 0.5 1
EE angle sine value 10-9

0.1695137880214

0.1695137880215

0.1695137880216

0.1695137880217

0.1695137880218

0.1695137880219

EE
 d

is
ta

nc
e

(n
um

er
ic

al
)

0 0.5 1
EE angle sine value 10-9

0.1695137880214

0.1695137880215

0.1695137880216

0.1695137880217

0.1695137880218

0.1695137880219

EE
 d

is
ta

nc
e

(n
um

er
ic

al
)

Fig. 3. Parallel-edge degeneracy handling. Left: Due to numerical round-
ing errors for distances of edge-edge pairs decreases to 0 when the edges get
more and more parallel (see Figure 7 in our paper for an example); Middle:
a zoom-in view show clearly that the distance really starts decreasing when
their angle’s sine value is at around 10−9; Right: we here set a threshold
to force the use of point-point or point-edge formulas to compute the dis-
tance of edge-edge pairs when their angle’s sine value is below 10−10, which
introduces a negligible (for optimization) nonsmoothness.

where n = (x2−x1)×(x3−x1)
| |(x2−x1)×(x3−x1) | |

. Each row of Γk is

[..., 1, ..., (−1 + β1 + β2), ...,−β1, ...,−β2, ...] (8)

where β ’s are those defined in DP−T (17, main paper).

Edge (x0x1) – Edge (x2x3).

Pk (x) =
[

x1−x0
| |x1−x0 | |

,n × x1−x0
| |x1−x0 | |

]
(9)

where n = (x1−x0)×(x3−x2)
| |(x1−x0)×(x3−x2) | |

. Each row of Γk is

[..., 1 − γ1, ...,γ1, ...,γ2 − 1, ...,−γ2, ...] (10)

where γ ’s are those defined in DE−E (18, main paper).

Point (x0) – Edge (x1x2).

Pk (x) =
[

x2−x1
| |x2−x1 | |

,
(x2−x1)×(x0−x1)
| |(x2−x1)×(x0−x1) | |

]
(11)

Each row of Γk is

[..., 1, ...,η − 1, ...,−η, ...] (12)

where (1 − η)x1 + ηx2 is the closest point to x0 on edge x1x2.

Point x0 – Point x1.

Pk (x) =
[
t, x1−x0
| |x1−x0 | |

× t
]

(13)

where t = e×(x1−x0)
| |e×(x1−x0) | |

and e is (1, 0, 0) if (x1 − x0) is not colinear
with (1, 0, 0), or e is (0, 1, 0). Each row of Γk is [..., 1, ...,−1, ...].

9 FRICTION IMPLEMENTATION
Since we lag the sliding basis in friction computations toTn = T (xn)
and normal forces to λn in (see Section 5 in our paper) from either
the last time step or the last friction update iteration n, all other
terms are integrable. The lagged friction is then

Fk (x, λ
n,Tn, µ) = −µλnTnk f1(| |uk | |)

uk
| |uk | |

(14)

and gives us a simple and compact friction potential
Dk (x) = µλnk f0(| |uk | |). (15)

Here f0 is given by f ′0 = f1 and f0(ϵvh) = ϵvh so that Fk (x) =
−∇Dk (x). In turn this likewise provides a simple-to-compute Hes-
sian contribution

∇2Dk (x) = µλnkT
n
k

(f ′1 (| |uk | |)| |uk | | − f1(| |uk | |)

| |uk | |
3 uku

T
k

+
f1(| |uk | |)
| |uk | |

I2
)
Tnk

T .

(16)

where I2 =

[
1 0
0 1

]
. Projecting this Hessian to PSD then simply

requires projecting the 2 × 2 matrix
f ′1 (| |uk | |)| |uk | | − f1(| |uk | |)

| |uk | |
3 uku

T
k +

f1(| |uk | |)
| |uk | |

I2 (17)

to SPD as Tnk is symmetrically multiplied on both of its two sides.
The above model is general so that f0 and f ′1 are both easy to

define for a range of f1 choices:
(1) C0 Ff : f0(x) = x 2

2ϵvh +
ϵvh

2 , f1(x) = x
ϵvh

, and f ′1 (x) =
1

ϵvh
;

(2) C1 Ff : f0(x) = − x 3

3ϵ 2
vh2 +

x 2

ϵvh
+

ϵvh
3 , f1(x) = − x 2

ϵ 2
vh2 +

2x
ϵvh

,
and f ′1 (x) = −

2x
ϵ 2
vh2 +

2
ϵvh

;

(3) C2 Ff : f0(x) = x 4

4ϵ 3
vh3 −

x 3

ϵ 2
vh2 +

3x 2

2ϵvh +
ϵvh

4 , f1(x) = x 3

ϵ 3
vh3 −

3x 2

ϵ 2
vh2 +

3x
ϵvh

, and f ′1 (x) =
3x 2

ϵ 3
vh3 −

6x
ϵ 2
vh2 +

3
ϵvh

.
Importantly this also emphasizes that there are never any divisions
by | |uk | | in all of our energy, gradient, and Hessian computations
for friction as they are always cancelled out. This ensures that so
that the implemented computation can be robust and accurate.

Our friction model applies our C1 – (2) in the above.. This design
choice again provides a continuous Hessian for better convergence
in our Newton-type method. Here we also provide a comparison of
behavior of the C1 model w.r.t. to the different orders of smoothed
friction model on our arch and ball roller example (Figure 4).

Examples C0
iters, t (s) / time step

C1 (IPC)
iters, t (s) / time step

C2
iters, t (s) / time step

sphere1K roller 1.37, 0.01 1.24, 0.01 1.26, 0.02

1m-height arch (static) 53.60, 12.21 45.22, 9.79 52.83, 11.42

Fig. 4. Ablation study on smoothed static friction.

We observe that C1 friction model provides a “sweet-spot”: im-
provement overC0 due to theC1 model’s continuous hessian, while
it also improves over theC2 model with less additional nonlinearity.

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

49:6 • Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman

10 SQUARED TERMS
In our implementation, we apply squared distances in our eval-
uations to avoid numerical errors and inefficiencies that can be
introduced by taking squared roots – especially in gradient and
Hessian computations. Concretely, our barrier terms are applied as
b(d2, d̂2) throughout our implementation. This manipulation leaves
our problem formulation with unsigned distances unchanged as
have d > 0⇔ d2 > 0. However, we must be careful with units in
order to preserve appropriate scaling of dimensions – especially in
terms of friction. Fortunately, we can sort this out directly via the
chain rule.
To ensure that units of normal force remain correct we now

observe that directly plugging in d2 and d̂2 into Equation (9) in our

paper no longer computes the contact force magnitudes λk defined
in our paper. Here we now have − κ

h2
∂b

∂(d2
k)
(d2
k , d̂

2
k). Applying the

squared formulation we rewrite the stationarity of the barrier as

M(
x − x̂

h2) = −∇Ψ(x) −
κ

h2

∑
k ∈C

∂b

∂(d2
k)

∂(d2
k)

∂(dk)
∇dk (x) (18)

which is M(x−x̂h2) = −∇Ψ(x) −
κ
h2

∑
k ∈C

∂b
∂(d2

k)
2dk∇dk (x). In turn

this allows us to extract the correct contact force magnitudes (when
using squared distances) as λk = − κ

h2
∂b

∂(d2
k)

2dk .

REFERENCES
Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &

Business Media.

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.

	Contents
	1 Smoothing
	2 Barrier Continuity and Testing
	3 CFL-inspired Culling of CCD
	4 Conservative CCD
	5 Equality Constraints for Moving Collision Objects and Time-Varying Boundary Conditions
	6 Adaptive Barrier Stiffness
	7 Distance Computation Implementation
	7.1 Point-point and point-edge constraint duplications
	7.2 Nearly parallel edge-edge distance

	8 Tangent and Sliding Modes
	9 Friction Implementation
	10 Squared Terms
	References

