Guaranteed Globally Injective 3D Deformation Processing

YU FANG?, University of California, Los Angeles & University of Pennsylvania & Adobe Research
MINCHEN LI", University of California, Los Angeles & University of Pennsylvania
CHENFANFU JIANG, University of California, Los Angeles & University of Pennsylvania
DANNY M. KAUFMAN, Adobe Research

Squash i Wrap

Wrapped

Squeeze

Fig. 1. Making Dumplings. Injective Deformation Processing (IDP) enables reliable and efficient deformation with a guarantee of injectivity for a wide

range of tasks. Here, applied for modeling and layout with a tetrahedral mesh, we can emulate manual steps with IDP to directly form a complex model from
simple primitives in just a few steps. Once complete, we copy-paste the model. Then layout, with non-intersection enforced, provides natural variation for the

copies as we nudge the plated dumplings for a final arrangement.

We extend recent advances in the numerical time-integration of contacting
elastodynamics [Li et al. 2020] to build a new framework, called Injective
Deformation Processing (IDP), for the robust solution of a wide range of
mesh deformation problems requiring injectivity. IDP solves challenging 3D
(and 2D) geometry processing and animation tasks on meshes, via artificial
time integration, with guarantees of both non-inversion and non-overlap. To
our knowledge IDP is the first framework for 3D deformation processing that
can efficiently guarantee globally injective deformation without geometric
locking. We demonstrate its application on a diverse set of problems and
show its significant improvement over state-of-the-art for globally injective
3D deformation.

CCS Concepts: « Computing methodologies — Shape modeling;
» Mathematics of computing — Continuous optimization.

*Joint first authors

Authors’ addresses: Yu Fang, University of California, Los Angeles & University of
Pennsylvania & Adobe Research, squarefk@gmail.com; Minchen Li, University of Cali-
fornia, Los Angeles & University of Pennsylvania, minchernl@gmail.com; Chenfanfu
Jiang, University of California, Los Angeles & University of Pennsylvania, chenfanfu.
jiang@gmail.com; Danny M. Kaufman, Adobe Research, danny.kaufman@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART75 $15.00

https://doi.org/10.1145/3450626.3459757

Additional Key Words and Phrases: deformation, global injectivity, dis-
tortion optimization, modeling, animation, numerical optimization

ACM Reference Format:

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guar-
anteed Globally Injective 3D Deformation Processing. ACM Trans. Graph. 40,
4, Article 75 (August 2021), 13 pages. https://doi.org/10.1145/3450626.3459757

1 INTRODUCTION

A wide array of geometry processing and animation tasks boil down
to minimizing a deformation objective while seeking to achieve
both targeted boundary conditions and injectivity. If we loosen our
requirements to satisfying just local injectivity, or else to focus solely
on 2D problems, then recent advances in distortion optimization
offer many promising solutions [Jiang et al. 2017; Kovalsky et al.
2016; Schiiller et al. 2013; Smith and Schaefer 2015; Su et al. 2020;
Zhu et al. 2018].

However, when it comes to optimizing 3D mesh deformations
with global injectivity, very few options are available. At the same
time, existing methods come with strong limitations on performance
and, perhaps even more restrictive, significant modes of failure.

In summary (we detail the work in Section 3), there is currently
an undesirable trade-off between reliability and expressiveness in
computing globally injective deformations in 3D. On the one hand,
many methods apply iterative contact-processing modules from
physics-based animation [Bridson et al. 2002] to resolve intersec-
tions in geometry processing. These methods are efficient and easily

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459757
https://doi.org/10.1145/3450626.3459757

75:2 « Fangetal.

support large deformations. However, this efficiency and expres-
siveness come at the cost of reliability: intersections are rarely fully
resolved (convergence) while inversions are generally ignored. On
the other hand, recent attention has also focused on applying fic-
titious domain methods from computational mechanics [Pagano
and Alart 2008] to reliably provide bijective maps [Jiang et al. 2017].
To enforce bijectivity, negative space is separately discretized by a
compatible triangulation. However, without refinement, this triangu-
lation introduces increasingly severe locking from sheared elements
as it distorts with the primary mesh. While in 2D this locking can
be alleviated by global remeshing, in 3D it cannot (tractability); and
here local remeshing [Jiang et al. 2017; Miiller et al. 2015] still suffers
from severe locking.

Towards providing a robust, reliable, general-purpose solution
we follow this well-worn path from physics modeling to geometry
processing. We port and extend Incremental Potential Contact (IPC)
[Li et al. 2020], a recent method for simulating contacting elasto-
dynamics, to enable globally injective optimization of deforming
meshes with guarantees of both non-overlap and non-inversion.
This enables us to build a new framework called Injective Deforma-
tion Processing (IDP) for the robust solution of a wide range of 3D
and 2D optimization problems on meshes requiring injectivity and
satisfaction of boundary conditions.

1.1 Contributions

IDP is a general-purpose framework for deformation processing
focusing on expressiveness and reliability with guarantees of stabil-
ity, non-interpenetration and, when desired and appropriate, non-
inversion on both triangular and tetrahedral meshes. To our knowl-
edge IDP is the first framework for 3D deformation processing that
can efficiently guarantee globally injective deformation without
geometric locking. To formulate IDP our contributions include:

e A simple and direct extension of the IPC model from elastody-
namics to the artificial time integration solution of a wide range
of deformation problems requiring injectivity;

e A comprehensive comparison with the 3D state-of-the-art on a
new benchmark set of stress-test examples demonstrating IDP’s
advances — we show IDP enables results and guarantees not
achievable with existing methods; and

e Demonstration and analysis of applications this enables on a range
of practical and challenging geometry processing and animation
tasks.

2 PROBLEM STATEMENT

We phrase a wide range of geometric tasks on meshes in terms of a
simple optimization framework. We begin each task with a reference
triangulation T (triangles or tetrahedra depending on application)
with n vertex locations in d-dimensional space stored in vector
% € R and a corresponding starting geometry x° € R9".

Our most simple task is to evolve the mesh from x° to a local
minimizer of a generally nonlinear and nonconvex energy E(x, %) =
Ex(x) defined w.r.t. X. Solutions are x* satisfying ||[VEz(x™)|| < e.

Boundary Conditions. Full or partial constraints on the boundary
geometry can be imposed. Our task then extends to evolving x°

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

to a geometry x* = argmin, Ex(x) s.t. x satisfying all boundary
1

conditions".

Injectivity. When we additionally impose injectivity constraints
we require the path traversed from x° to x* be non-inverting and/or
nonoverlapping. A path that is both non-inverting and non-overlapping
gives a globally injective deformation.

Time-varying conditions. Finally, in many tasks we consider the
optimization further parameterized with additional terms u, so that
we minimize Ex(x, u). Here parameters u can vary over the opti-
mization process during evolution from x° to x*, parameterized in
turn by artificial time variable ¢t € R. “Time-varying” u enable a
rich range of applications and optimization tasks including scripted
boundary conditions (e.g. for animation), homotopies of geometry
and/or energy, and even online optimization to provide user-in-the-
loop interaction.

3 RELATED WORK

While IDP is also an effective tool for globally injective deforma-
tion in 2D (see Section 7.4), a range of efficient methods have been
recently developed [Jiang et al. 2017; Smith and Schaefer 2015; Su
et al. 2020] for this task. Likewise, we note that for applications
where a 3D target domain’s boundary is fully fixed, recently devel-
oped methods [Du et al. 2020; Kovalsky et al. 2015] robustly and
efficiently obtain bijective maps. Here we target IDP primarily on
underserved 3D tasks and so focus here on 3D globally injective
deformation processing efforts and related advances.

Computer graphics has enjoyed a friendly sharing of techniques
across borders between physics simulation and geometry process-
ing; see e.g., Bouaziz et al. [2012] and Bouaziz et al. [2014]. This
has lent itself to complementary advances and useful borrowings.
Most germane to our discussion are a number of intertwined de-
velopments in injective mapping and contact mechanics. Broadly,
methods seeking globally injective 3D deformation with partial or
fully free boundaries have so far followed one of two routes.

In the first route, iterative physics-based collision-response meth-
ods [Bridson et al. 2002; Harmon et al. 2008] have been extended
for geometry processing tasks [Brochu and Bridson 2009; Harmon
et al. 2011; Sacht et al. 2015]. These methods successively step, de-
tect intersection and then correct with iterative sweeps. Modules
for these separate components are well-polished (and so readily
available and easy to adapt), often parallelized and generally very
efficient. However, as touched upon above, these solvers generally
do not handle inversion, have no guarantees of convergence and, in
practice, generally cannot and do not resolve all interpenetrations
[Li et al. 2020].

In turn, even small interpenetrations in meshes lead to unac-
ceptable errors that vary with application, including intersecting
animations, unsightly rendering artifacts, downstream cloth simula-
tion failures, and geometries that cannot be 3D-printed. To redress
these failures many pipelines in physics have been further aug-
mented with failsafes and correctives [Baraff et al. 2003; Buffet et al.
2019; Volino and Magnenat-Thalmann 2006; Wicke et al. 2006; Wong

!Here and throughout argmin and min denote respectively local minimizer and mini-
mum.

Guaranteed Globally Injective 3D Deformation Processing « 75:3

Fig. 2. Rhododendron. We model a Rhododendron pattern starting with just a thin box that we fold to form a single petal. Instancing and arranging the
folded shape, and then pulling the copies together with contact creates natural variations in the petals and forms our final flower on the right.

et al. 2018; Ye et al. 2017, 2015]. While often helpful, these methods
in turn incur cost, complexity and often have unintended conse-
quences. Corrections often distort the geometry with undesirable
deformations which also introduce new, subsequent artifacts such
as inversion, that require further clean up.

In the second route, fictitious domain methods from computa-
tional mechanics, see e.g., Pagano and Alart [2008], have been ex-
tended for both physics-based animation [Misztal and Beerentzen
2012; Miller et al. 2015] and for the reliable computation of bijective
maps [Jiang et al. 2017]. While effective and efficient in 2D, in 3D,
as we cover above in Section 1, they suffer from unavoidable and
unacceptable locking. See Section 6 for our analysis of this behavior.

Here we explore a new route, extending the recently developed
IPC model [Li et al. 2020] for elastodynamic contact, to 3D injec-
tive deformation processing. IPC employs an unsigned-distance,
regularized barrier-based approach with continuous collision de-
tection (CCD) applied within nonlinear optimization solves per
time steps. We extend IPC to locking-free injective deformation
problems by casting optimizations as artificial time stepping of
barrier-augmented deformation objectives.

4 METHOD
4.1 Artificial Time Stepping

We include diverse terms in our objective E depending on tasks
and needs. To minimize E we apply artificial time integration via
the gradient system Mx = —VEz(x), where M is a mass matrix of
the triangulation. For time integration we choose implicit Euler
(IE) — selected for its stiff decay [Ascher and Petzold 1998] enabling
larger time steps h. Concretely, towards solving x* = argmin,. Ex(x),
starting with x* we evolve the system forward per step with?

x"1 = argmin & |lx — x" |13, + hE(x, %, u(1)). @
X

Resolving each time step then requires the nonlinear minimiza-
tion of (1). We solve these minimizations via Newton iteration with
globalization; see below. Each geometry process is thus divided
into time intervals and then further subdivided into subintervals
— each defined by a Newton iterate. In order to satisfy injectivity
constraints throughout this process we ensure that all steps - that is
both between outer time steps and between inner iterations, satisfy
non-intersection and/or non-inversion.

2lyli3, = y" My.

4.2 IPC Barrier Energies

To enforce strict non-intersection guarantees we add the regularized,
unsigned distance barrier, B(x), from IPC [Li et al. 2020] to our
system energy. The IPC barrier considers unsigned distances d; (t) >
0, between all non-incident point-triangle and all non-adjacent edge-
edge pairs i in a surface mesh. These are indexed in C. We begin
with choice of a target, d>o, specifying the distance at which
barrier repulsions can begin. Then, the IPC barrier per distance d is

. —(d-d)?In(4]
bady—| @D In(4), 0<d<d o
0 d>d
and the corresponding full barrier is then
B(x) = x) b(di(x),d), 3)

ieC

with k¥ > 0 an adaptive conditioning parameter automatically con-
trolling the barrier stiffness [Li et al. 2020]. A few details are worth
pointing out here. First, while barriers for all necessary surface pair
combinations are included in (3), any pair currently at a distance
farther than d provide no contribution and can safely be removed
from current evaluation, while still preserving sufficient continu-
ity for computing barrier Hessians. This enables efficient solutions
by minimizing assembly costs and fill-in for linear (Hessian) sys-
tem solves. Second, the barrier functions b are indeed C2. However,
distance functions evaluated would be C? for unavoidable configu-
rations; i.e., parallel edge-edge cases. In turn these discontinuities
can hamper convergence, and often even stop it altogether. To this
end IPC provides careful mollification and numerical treatment that
enables stable and smooth optimization throughout [Li et al. 2020].

Minimizing our objective with the barrier B included extrem-
izes the remaining terms subject to enforcement of one-sided non-
interpenetration constraints. While such constraints are usually
nonsmooth, here, because the barrier is regularized we can compute
both its gradient and Hessian. This allows the barrier to be directly
incorporated as an additional potential in our time-stepper and so
optimized with second-order information for higher-order conver-
gence. For each step we then apply the Newton-type IPC time-step
solver from Li et al. [2020] to ensure non-intersecting descent steps
with filtered line-search. See our supplemental document for details
of our solver.

4.3 Boundary Conditions

When applied, Dirichlet boundary conditions (BC) specify a subset
of positionally constrained vertices 8 C [1, n]. For every vertex
Xk, k € B, we have a corresponding target position x. We first

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

75:4 « Fangetal.

KARa

Fig. 3. Shy Armadillo. Left to right: moving a sparse set of hand and torso handles (feet fixed) IDP’s barriers and deformation enable easy scripting of a
complex sequence. We first bend just the armadillo’s hands. Contacts then pushes it to bury its head while its nose peeks out without intersection. Next, we

rotate the torso — collapsing the hiding armadillo onto it into its legs.

allocate a quota of m steps to reach these targets. Allocation can
be determined both by application goals and efficiency. See our
discussion below per application in Section 7. We then apply the
first m time steps to evolve from x° to the geometry at time step m,
x™, satisfying all boundary conditions. From here we can continue
to time step in order to further reduce the objective while preserving
the achieved boundary conditions.

We subdivide X — xg into m subsegments, creating a sequence of
intermediary target positions ’Eltc for ¢t € [1, m]. In the first Newton
iterate of each of time step solve ¢, we then start by checking the
full step taking all bound vertices in 8 to their prescribed targets.
We find, via CCD and inversion detection (see our supplemental
document for details), a largest possible feasible size step towards
these targets that causes neither inversion nor intersection, and
conservatively apply it to update all bound vertices. We then add a
simple, adaptive quadratic penalty to the objective

KB -
P(x, 1) = —=myllxge = AR 4

where my. is vertex k’s lumped mass. We adaptively increase kg by
2x whenever the current Newton iterate is close to convergence
(via norm of gradient measure) and current targets are not satisfied.
Alternately, if the current iterate satisfies the time step’s targets,
we simply fix the bound vertices to their target positions, discard P
from the objective and continue Newton iteration to convergence.

4.4 Energies

For measuring deformation from geometry X to x we employ linear
finite elements and, where needed, hinge stencils. This gives us
corresponding deformation gradients per element ¢t € T of F; (x, %) =
X;(X;)~! where X; and X; respectively store deformed and effective
rest state frames. E.g, for tetrahedra t with vertices x1, x2, x3, x4
we have X; = [x4 — x1,x3 — x1,x2 — x1] € R¥3. Similarly, for 3D
shell models we compute the discrete bending/curvature measure
from the dihedral angles of each interior edge. To enable elastic
deformation behaviors we add standard distortion energies ¥ to our
objective E. Giving us contributions to the objective in the form of

Eq(x,%) =) 0¥ (Fo), (5)

teT

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

where v; > 0 is the area or volume of the rest shape of element
t. To enforce non-inversion we apply barrier distortion measures,
e.g., neo-Hookean (NH) [Ogden 1997] and symmetric Dirichlet (SD)
[Smith and Schaefer 2015], and correspondingly add Smith and
Schaefer’s [2015] inversion filter to our line-search. Alternately,
when we do not require inversion control we can apply a wide
range of non-barrier distortion energies [Alexa et al. 2000; Igarashi
et al. 2005; Sorkine and Alexa 2007]. Finally, in either case, as needed
for shell models we apply discrete shell bending energy [Grinspun
et al. 2003].

While geometric distortion measures like SD on their own gen-
erally do not provide parameters for changing distortion results,
physically motivated measures like NH enable interesting control of
deformation shape by changing material moduli, see Section 6. Like-
wise we enable balancing the relative weighting of multiple terms in
the objective E to obtain further fine-grain control of deformation.

4.5 Time-Varying Conditions

Handles. For modeling, sculpting, animation and many other ap-
plications the sequence of time-stepped deformations (and not just
the final achieved state) provides a useful feedback and often even a
final desired output. Binding handles to boundary conditions allows
scripted or interactive, time-varying changes to boundary condi-
tions. Here, (rather than precomputing per-time-step targets w.r.t.
final destination — as above) we instead provide a sequence or online
stream of per-step target locations)?;;“. Our process for resolving
them per time step remains otherwise unchanged from Section 4.3
above.

Shape. Once again taking advantage of the discrete time step
framework we are also able to script changes in geometry per step
and so correspondingly drive the optimization path. Transforma-
tions, for example expansions and contractions, of local or global
reference shapes, scripted over time, are simply enabled by direct
transform of X; at the start of each step. Similarly, in modeling,
sculpting and other applications, it is often useful to allow the opti-
mizations to “bake” a current deformation as a new reference (e.g,
rest) shape. For example this can be applied at the end of a time step
whenever a modeling stage is complete. Finally, changes to refer-
ence shapes need not be integrable. For geometric operations plastic

deformation is often desirable in order to sculpt and model changes
that are not fully resisted by elasticity. To model controllable plastic-
ity effects we apply return mapping from solid mechanics [Dunne
and Petrinic 2005; Gao et al. 2017] that apply operators Z to project
deformation gradients to limit-surfaces. This allows us to record
plastic change by simply updating X;. Given current deformation
gradients from the last time step, this amounts to just a simple
projection, per element, at start of step: X, - X7 1Z(Fy).

Mesh. Finally, during extreme deformation regions of large change
can be better resolved with re-meshing. Continuous optimization
of E with re-meshing would introduce nonsmooth jumps (slowing
progress). Here, however, by time stepping with a first order system
we can simply and directly remesh our domain at the end of any
time step. When remeshing (we use TetGen [Si 2015]) we preserve
boundaries, optionally adding Steiner points on the mesh surfaces,
and so do not introduce overlaps.

5 IDP FRAMEWORK

Together the above components form our simple and efficient frame-
work, IDP, for globally injective deformation tasks. At each time
step IDP minimizes the step energy

S§'(x) = Ylx = x"|[5; + hE(x, %, u(t)). (©6)

For minimization we implement our Newton solver in C++, applying
CHOLMOD ([Chen et al. 2008], compiled with Intel MKL LAPACK
and BLAS for linear solves and Eigen for remaining linear algebra
routines [Guennebaud et al. 2010]. To enable future applications,
development and testing we will release our implementation of
the IDP framework as an open source project and include in our
supplemental both input and output meshes from our benchmark
testing and demonstration applications below. In the following all
our experiments and evaluations are executed on a Macbook Pro
with 2.3 GHz 8-Core Intel Core 19, or Ubuntu Desktops with 4.2 GHz
4-core Intel Core 17-7700K, 3.7 GHz 6-core Intel Core i7-8700K, 3.0
GHz 8-core Intel Core i7-9700, or 3.6 GHz 8-core Intel Core i9-9900K
as detailed per experiment below.

5.1 Time Step Size

Examining (6) we see that time step size h balances the often strongly
nonlinear and nonconvex energies in E against a positive definite
quadratic damping term. Larger h advances farther per time step at
the cost of more challenging Newton solve and so more iterates per
step. While our system offers great flexibility in choosing time step
size here, for simplicity, we apply throughout all examples a time
step size of h = (0.04)2. We select this size for two reasons. First, we
note this step size performs well across examples. Second, in cases
where we wish to export a deformation sequence, time steps at this
size have the visual effect of stepping a highly damped animation
with frame-rate sized time steps of VA (24 fps).

5.2 Setting Distance Accuracy

For differing applications specifying a choice of d controls how
tightly surfaces can conform. Relatively small d, e.g. 1073 in our
benchmark below, give imperceptible spacing between boundaries.
While for other applications, e.g. to create 3D-printable geometries

Guaranteed Globally Injective 3D Deformation Processing « 75:5

or to enable animation clean-up, we may wish to push to greater
size gaps and so allow selection of larger d for these tasks.

5.3 Guarantees

By construction, when both our barrier, B, and a non-inverting
distortion energy are included in the objective, the IDP time stepper
guarantees that every step taken in each inner Newton iterate, and
so correspondingly every step taken from x?, is both non-inverting
and non-intersecting. The resulting final step we end with is then
correspondingly guaranteed to give a globally injective deformation.
In turn, as discussed above, it also straightforward to disable all or
some of these constraints when desired. To allow interpenetration
the user simply does not add the barrier to the objective, while
allowing inversion just requires the user to not apply a barrier
distortion energy — instead applying non-barrier distortions, e.g.
StVK or ARAP, if desired.

Fig. 4. Shell bunnies at varying tolerance. Varying solver tolerance en-
ables a wide range of deformation behaviors (left at 1 and right at 0.1).

5.4 Tolerance

In turn we solve each time step with controllable accuracy w.r.t. the
Newton decrement n(x) = (stt(x))_lvst(x), terminating each
at a user selected tolerance of ||n(x)|| < e;. With smaller tolerances
each solved step better resolves deformation energy (and so for
example better improves distortion) near x!. However, irrespective
of the tolerance a user selects, applied injectivity constraints are
preserved. For many applications, for example in creating geometry,
we observe that large tolerances are more than suitable and often
even offer an interesting and useful range of effects as we vary ;.
For example, consider Figure 4 where we get different patterning
for the same triangle mesh across differing 5. On the other hand in
other cases, e.g., if we seek to tightly minimize a distortion, smaller
tolerances are best. Here IDP exposes the tolerance to the user and
converges to requested accuracy per step and, when desired, to
convergence of the energy minimized. See below in Section 7 for
examples of these applications.

5.5 Restrictions

Finally, we should note specific design choices we have made in
building IDP. To enforce global injectivity we require a globally
injective initial state, x°. In turn, while IDP will then always pre-
serve injectivity, across every step of deformation, this comes with a

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

75:6 « Fangetal.

restriction too. If the steps prescribed by a sequence of imposed BCs,
starting from x°, does not allow an intersection- and inversion-free
path (over all variations of injective deformations satisfying the
incremental BCs at each step) then IDP will not reach the target.
Likewise, an interesting corollary also
follows: if x has starting intersections,
IDP will preserve them throughout its
steps. Consider, for example, five ini-
tially nested deformable sphere vol-
umes. They start interpenetrating and
so their surfaces subsequently cannot intersect. IDP thus preserves
the nested arrangement throughout deformation (see inset). In prac-
tice this is often useful as starting geometries frequently have (by
artist construction) interpenetrations that are a feature, see e.g. the
finger nails of the mannequin model in Section 7.3.

5.6 Summary

IDP does not fail for self-intersecting input and also does not disen-
tangle. This is handy in applications like animation cleanup where
mesh subcomponents often have “by-design” intersections from
artist modeling. More generally IDP ensures that a mesh without
self-intersections will remain continuously interpenetration-free
throughout its deformation solely via unsigned distances barriers de-
fined on the boundary surface mesh. Vertex penetrations not present
in the input can not occur and so are not considered in the barrier.
This allows nesting if input meshes are contained in each other and
likewise, if any mesh-surface primitive pairs are interpenetrating
on input they will remain so throughout the IDP deformation. For
2D triangular meshes and 3D tetrahedral meshes we additionally
ensure non-inversion for all elements whenever barrier deformation
energies are applied (e.g. NH or SD). Correspondingly, if invertible
energies (e.g. ARAP) are applied and/or 3D triangular meshes are
deformed we do not. This means that, when desired and appro-
priate, IDP continuously ensures that deformations are injective
throughout the process while only ensuring non-interpenetration
otherwise.

6 BENCHMARK

Currently Simplicial Complex Augmentation Framework (SCAF)
[Jiang et al. 2017] is the only reported method for achieving guaran-
teed, globally injective deformation processing in 3D. In Section 7
below we demonstrate a wide range of applications that are enabled
by injective mapping in 3D and hope that new methods building off
of our framework will open the door to many more. Here we begin,
however, by testing with a benchmark inspired by the bunny-in-box
stress test demonstrated by Jiang et al. [2017] for the SCAF method.

To start we place a watertight bunny model inside an 10.7X larger
enclosing box. In the original SCAF test the bunny’s mesh is en-
dowed with ARAP energy on its surface and then “grown” by as-
signing a 27x scaling of the same mesh as the deformation energy’s
rest shape. Here the bunny should grow to fill the box (but never
intersect it) while likewise ensuring non-intersection. To do so the
SCAF method creates a tetrahedral scaffolding (inflated with the
SD energy) both inside the model and also outside, conforming to
the box boundary. We expect improved behavior (with of course

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

Fig. 5. SCAF and IDP comparison on the bunny box test from Jiang et
al. [2017]. Here we pick best scaling setting for SCAF at 4Kx and compare
with IDP with the default 27x scaling, comparing the progression of both
deformations (SCAF in yellow, top row, and IDP in orange, bottom row)
starting at left and going to the final max achieved deformation for each on
the right. Here IDP tightly fills the enclosure while locking prevents SCAF’s
deformation from progressing.

Fig. 6. SCAF results at different target scalings. Increasing target scal-
ing (27x%, 4K%, 729K X, final solutions shown from left to right) can improve
SCAF’s ability to deform in the bunny test. However, as we see here , all
suffer from locking.

corresponding cost increases) as meshes increase resolution. Here
we consider the behavior of methods on this expansion test across
triangle meshes of the bunny with respectively 700, 3K, 13.5K and
54K vertices. In a comparable volumetric set-up for IDP we tetrahe-
dralize the same bunny, endow the entire mesh with an NH energy
and similarly grow it (without remeshing), by enlarging rest shape,
to fill the box. See Figure 5 for set up and respective results for IDP
and SCAF.

Across all meshes and over a wide range of stiffnesses and toler-
ances (and so outputs with controllably varying deformation) IDP
rapidly reaches the box boundary without self-intersection nor leav-
ing the box. As expected, as we go to larger mesh resolutions with
IDP the bunny’s deformation increasingly conforms to both its own
boundary and box limits, until by 54K vertices it fills almost the
entire box volume with just 0.07% left empty; see Figure 5 bottom
right.

In comparison, despite a 27X scaling being much larger than the
box, we find that SCAF does not expand to significantly fill voids

between the bunny and box even as we scale to the 54K mesh. We
note comparable results illustrated in Jiang et al [2017]. In order
to push SCAF output to reach full expansion we next disable its
fixed, upper iteration limit and instead let it run until stationarity
(max 8x < 107°). Here we still observe significant gaps at termina-
tion. See Figure 6 left, where we illustrate the final shape SCAF’s
growth achieves for the 27X scaling. Next, in order to increase the
effective weight of the ARAP energy’s expansion against the weak
resistance of its soft SD energy in the scaffold mesh, we experiment
with successively increasing the rest shape. In Figure 6 middle and
right we see some of the successive results as we increase scaling,
still with significant voids separating both between the SCAF bun-
nies’ boundaries as well as between bunnies and box. At a 4096X
increase in rest shape we observe best growth for SCAF. Here, for
the 54K vertex example, SCAF fills 60.9% of the volume. See Figure
5 top right, for the corresponding gaps in the final SCAF mesh. We
note that despite these differences SCAF and IDP have comparable
timings throughout the scaling tests. Similarly, replacing the NH
energy with SD, we observe comparable behavior for IDP on all
tests, albeit with slightly improved timings corresponding to lower
numbers of contacts processed. Please see our supplemental for a
full summary of statistics for these tests.

Here we see the challenges for SCAF (and more generally 3D
fictitious mesh methods — see discussion in Miller et al. [2015])
where an entire remeshing of the domain in 3D is not practical.
SCAF (as in Miiller et al.) adopts the strategy of local remeshing
operations for 3D and so obtains shear-locked configurations of
scaffolding elements which, as we see above, resist deformation
irrespective of how relatively weak the scaffold energy becomes.

Fig.7. Cylinder in cylinder comparison. We illustrate locking in a simple
test in which we attempt to grow a cylinder mesh enclosed in a larger
cylinder cage (left). SCAF, despite no obstructions in the cage, quickly locks
after 57 iterations (mesh in yellow, scaffolding in grey) with no further
progress (middle). IDP (mesh in orange) completely fills the cage after 60
time steps (right).

The bunny-box test, due to its simple boundary, exercises con-
strained deformation only moderately. Next, we apply two new tests
to further push constrained deformation. First, to further investi-
gate locking we propose a simple variation: inserting a 4.4K vertex
cylinder (height: 1, radius 0.5) inside a larger, enclosing 5.5K vertex
cylinder cage (height: 3.2, radius 0.55), we grow the cylinder by
1024% and 27X respectively for SCAF and IDP, until each method
terminates with max §x < 107>, Here in 60 time steps IDP com-
pletely fills the cage while SCAF, at 57 iterations, is locked, unable
to make further progress with imperceptible growth. See Figure 7

Guaranteed Globally Injective 3D Deformation Processing « 75:7

for steps in the respective deformations including final states and
scaffold configuration.

Fig. 8. Octocat in hourglass comparison. We expand an octocat model
inside an hourglass cage with the goal of enabling deformation to fill the
cage and so pass through the tight hourglass constriction (left). Here SCAF
grows moderately (mesh in yellow, scaffolding in grey), until locked without
filling the bottom lobe (middle). In contrast IDP (mesh in orange) passes
through the neck and deforms, without intersection nor inversion to fill the
cage volume (right).

—

1
\

NSNS
\1\1\\b “ /5/;

7)) e
y

o0l

K

¢

Fig. 9. Bunny in hourglass comparison. Following the experiment in
Figure 8 we replace the enclosed octocat with a simpler bunny geometry.
Here too SCAF is unable to fill the bottom lobe while IDP fills the entire
hourglass cage.

Finally, to fully stress IDP we propose an hourglass test where we
place respectively bunny (13.5K vertices) and octocat (17.1K) models
inside hourglass cages (4.5K); see Figures 8 and 9 for SCAF and IDP
results. We apply a growth of 166X and 9261x (best growth factors
found) respectively for SCAF bunny and SCAF octocat, with the
goal of enabling deformation to fill the cage and so pass through the
tight hourglass constriction. Here SCAF grows moderately without
filling the either bottom lobe until stopping progress altogether. See
Figures 8 and 9 for SCAF steps and the final locked configurations
of its scaffoldings. In contrast for both models, each with applied
27x growth, IDP is able to pass through the hourglass neck and
deform, without intersection nor inversion, with bunny and octocat
filling respectively 98.3% and 97.8% of the hourglass cage volume.

7 APPLICATIONS

Here we demonstrate and analyze a wide range of deformation tasks
enabled by the IDP framework.

7.1 Sparse Handle Deformation

Inspired by Zhu et al. [2018] we begin with two sparse handle
deformations tasks. We apply scripted sequences of Dirichlet BCs
to a bar (5.5K vertices) and armadillo (43K vertices) meshes — each
equipped with NH energy.

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

75:8 « Fangetal.

Fig. 10. Bar bend. from a straight reference shape (grey). We fix its two
ends and then rotate it through 2 rounds of twists. Left to right we demon-
strate three variations: an elasto-plastic twist with barrier (red); an elastic
twist with barrier (purple); and, by removing the barrier, an elastic twist
deformation (green) that is only locally-injective.

Bending the bar, we fix its two ends and then rotate it through 2
rounds of twists. We demonstrate three variations, left to right in
Figure 10: in red we demonstrates a plastic twist with barrier — here a
more symmetric model is achieved due to the less elastic resistance
while preserving global injectivity; in purple we demonstrate a
globally injective twist with just the barrier — here elasticity resists
the constraints more and so creates a buckled shape; finally, in green,
we remove the barrier and solely enforce non-inversion.

For the armadillo model we consider an example animation task
and script a small “embarrassed” sequence without plasticity. See
Figure 3 and our supplemental video. We apply just a small set of
handles on hands and torso - letting the barrier and deformation
take care of the rest. We first bend its hands to bury its head inside
them. Here the collision between face and arms allows its nose to
peek out (without intersection). Next, we rotate the armadillo’s torso
to hide - collapsing it into its legs. With a model height of 2m we
exercise the barrier with an imperceptible gap, applying d=10"3m.

7.2 Normal Flow

Here we investigate the application of globally injective normal
flows. While flows are of course extensively investigated, to our
knowledge this is the first demonstration of normal flows that en-
sure non-intersection, rather than merging or removing degenerate
regions; see e.g., Mullen et al. [2007].

IDP applies per time step normal direction, Neumann boundary
conditions on mesh surfaces. The objective at time ¢ is then

E(x,N") = B(x) - y%xTLx - ﬁxTNt, (7)

where N' is the normal vector field of the surface at start of time
step t, B is flow speed (either positive or negative), L is the element
volume weighted Laplacian matrix with negative diagonal entries,
and y smoothing intensity. The statistics for all our normal flow
examples are summarized in our supplemental document while we
detail applications below.

Positive flows. Outward flow with IDP effectively inflates surfaces
where contacting surfaces form creases where standard flow would
merge. These highlight concavities while smoothing small surface

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

Fig. 11. Justicia and Rose. Left to right we illustrate the simple steps for
modeling two flowers starting from simple volumetric primitives. Top left:

we bend and then repeatedly copy and paste a tetrahedral bar. Both rows:
simple winding twists combined with complex contact resolution then form
the Justicia and Rose models.

details, giving us cute cats and cartoon-like hands. See Figure 12.
Similarly, adding random noise to an ellipsoid obtains brain-like
creased shapes after outward flow (Figure 12 (c)).

Negative flows. Inward flow, again without removing degener-
ate regions, obtains shape skeletons that remain watertight and
non-intersecting throughout (Figure 13). Over steps we quickly see
exceedingly thin, delicate structures appear as we watch the flow
(see our supplemental video). As our Neumann conditions are set
uniformly on the surface, in the extreme our inward flow provides
a shape quite similar to the medial axes representation of the input,
however here we preserve shape topology. For negative flows in
addition to N we also recompute M and L per time step, obtaining
a more pleasing, smoother seqeunce.

Inflation. Inflating curves [Baran and Lehtinen 2009] gives excit-
ing variations to geometries. Here observing the puffy, balloon-like
crinkling our outward flows produce we experiment with creat-
ing 3D font variations with standard 2D type-faces. Triangulating
fonts we fix boundaries and flow the interior to produce inflated
fonts with crinkled geometries. For each time step taken we gain
ever-expanding versions of fonts enabling animation (see our sup-
plemental video) and a range of 3D type shapes which can be further
controlled by modulating smoothing intensity. In Figure 14 we ex-
periment with number of time steps and smoothing intensities on a
range of fonts and characters (Figure 14). We first demonstrate two
Chinese characters from Ma Shan Zheng font, "Tao" and "Peng" ("the
philosophy behind everything" and "contact"), with more and less
steps respectively. With more steps Tao’s volume grow larger, gen-
erating more wrinkles and inter-stroke contacts. We then test two
words, "Delicious” and "Seriously”, in Linux Libertine O and Arial
respectively. With larger smoothing intensity applied to "Seriously",
less wrinkles form with odd but interesting bulges at T-junctions,
while “Delicious” demonstrates pleasing wrinkles in concavities and
bulging where letters collide.

7.3 Animation Repair

Animation sequences often contain unacceptable intersection arti-
facts. Resulting interpenetrations can be unsightly and obvious (see
e.g., Figure 15) or they can instead be visually subtle (and so hard

input

(a) cat (b) hand

Guaranteed Globally Injective 3D Deformation Processing « 75:9

(c) “brain”

Fig. 12. Positive (outward) normal flow with IDP inflates surfaces with contacting regions forming folds in places where standard flows would merge or
remove degeneracies. This highlights concavities while smoothing small surface details, giving us (a) cute cats and (b) cartoon-like hands, while (c) flowing a

noisy ellipsoid obtains brain-like creases.

input output input output

v - NS) — {
7 >
> 2 = o \‘\:\
' >4
(a) bunny (b) feline

Fig. 13. Negative (inward) normal flow with IDP obtains shape skeletons
that remain watertight, topology preserving and non-intersecting even for
extreme flows.

to notice) but still cause significant failures (see e.g., Figure 17) in
downstream tasks like cloth simulation [Baraff et al. 2003; Buffet
et al. 2019].

IDP performs animation cleanup starting with an input of m
consecutive frames all sharing the same mesh topology and varying
vertex positions stored in the sequence f1, ..., f™ € R9". Setting
x' = f! and starting from the second frame, f? IDP fixes each
consecutive frame, f*, as a single “backward” time step where the
target frame, f*, is applied both as a proxy for the last time step, so
we don’t stray far, and as reference shape for deformation energies,
to minimize difference. Specifically, to obtain an intersection-free
fixed frame x* close to f* we solve the minimization

1
x* = argmin Sl = FEI3; + hE(x, *), 8)
X

initialized from last fixed frame x*~!. For objective we apply
E(x,%) = ¥memb (%, X) + Phend (x,) + B(x),

with an StVK membrane energy (¥jnemp) and discrete shell bending
(Phend)- After each solve of (8), to process the next frame, f5*1, we
again initialize the optimization with fixed frame x* and repeat

through the sequence until we obtain a final, fully cleaned sequence.

When the direct, linear path between a cleaned frame x° and the
next input frame f5*! is interpenetration-free, this process leaves
the frame unmodified (x**! = £$*1). Otherwise, minimizing the
energy for each step will continue to fix frames, starting from the
last, with deformation away from the target frame balanced against

the barrier. Statistics for IDP animation repair tasks are summarized
in our supplemental document.

Mousey. We start by demonstrating our cleanup on an animation
sequence created by a commercial rigging tool®. Here, meshes bound
via skinning to a generic skeleton motions often create large and
generally unusable intersections. In Figure ref and our supplemen-
tal video we demonstrate both an original “mousey” intersecting
animation input sequence as well as the corrected sequence pro-
duced by IDP at corresponding frames. For example the original
mousey sequence has severe intersections where its hand almost
fully disappears into its belly (Figure 15). IDP successfully create
an indentation on the belly as pushed by the hand while remov-
ing intersection from the frame. Here we set d = 0.001m and so
obtain tight conforming contact in the animation. We also apply a
large stiffness (Young’s modulus 10° Pa) to maintain smooth surface
curvature.

Mannequin. Next we apply IDP to a set of three animation se-
quences, again created with the same rigging pipeline, with a man-
nequin mesh [Li et al. 2018b] (13K vertices) intended for downstream
application with cloth simulation. Both before and after IDP’s inter-
section cleanup, the animation output is, on quick visual inspection,
nearly identical. However, a more careful look reveals that many
frames with smaller but severe intersections are corrected; see Figure
16. Since we minimize both intrinsic and extrinsic surface differ-
ences, the fixed regions remain smooth with curvatures close to
original geometries where possible. Because these sequences are
next intended for cloth simulation we can make this following job
easier by not only ensuring non-interpenetration, but also promot-
ing bigger gaps between surfaces with a large d = 0.01m. In Figure
17 we then compare the effects of IDP fixed vs. starting mesh input
for cloth simulation. Here IDP is applied solely to fix intersections
in the underlying animated mannequin geometry and is not used to
model the garments draped on the mannequin. After IDP repair of
the mannequin’s geometry in the sequence, a simulator modeling
cloth dynamics [Li et al. 2021] drapes a garment on both the repaired
and un-repaired mannequin sequences. In the simulated output we

3 www.mixamo.com

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

75:10 + Fangetal.

(a) “Tao” (b) “Peng”

(©)

@

Fig. 14. Font inflation. The puffy, balloon-like crinkling of IDP’s outward flows creates 3D font variations from standard 2D type-faces. Each time step
creates new variations with expanding glyph boundaries reacting to each other in contact.

(a) original (b) fixed

(c) zoom-in

’

(f) zoom-in

(d) original (e) fixed

Fig. 15. Mousey sequence animation repair. Animation sequences often contain unacceptable and severe intersection artifacts. Here in the Mousey
sequence (a and d) arms intersect both the belly and hip. IDP’s clean up (b and e) removes all intersection from all frames while creating indentations on the

belly and hip as pushed by the hand.

original fixed

\\

N

\
A W

\

N

(a) ankle intersection (b) hand-thigh intersection

Fig. 16. Mannequin sequence animation repair. Applying larger d
threshold (here 0.01m) enables larger gaps between the mannequin’s sur-
faces in the repaired sequence and so improves results for downstream cloth
simulation pipelines.

see that the unintended bunching, pinching and scratching artifacts
generated by simulation with the original input sequence are all
avoided when simulation instead uses the fixed sequence.

7.4 Min-Max Distortion Optimization

While primarily focused on 3D deformation processing, IDP also
supports 3D— 2D parameterization and 2D deformation tasks. Here

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

fixed original fixed

original
,/t ¢

(a) pinching artifact

(b) scratching artifact

Fig. 17. Repaired mannequin sequence with simulation output. Ap-
plying IDP’s repaired mannequin sequences (see Figure 16) to a downstream
cloth simulator [Li et al. 2021] avoids unacceptable pinching and scratching
artifacts in resulting garment dynamics.

we apply IDP to optimize globally injective, min-max distortion
problems for 3D and 2D deformation, and parameterization. As
demonstrated in Section 7.1, deformation tasks often focus on min-
imizing energies (5), that discretize distortion measures, ¥, over

triangulations. As we’ve already seen, this provides an excellent
means of driving down average distortion. However, in many cases
this can still leave some elements with severe distortion concentra-
tions. In turn, these small concentrated regions can have an outsized
negative impact by creating severe artifacts and/or numerical chal-
lenges for downstream applications like rendering and simulation.

To improve worst-element distortions we formulate a regularized
min-max optimization for IDP by applying a p-norm extension to
(5) with with exponential factor p > 1,

Ep() = rlp) Do (M), r(p) = (¥ 0) . 9)

teT

Here r(p) calibrates the modified energy so that the p-norm ex-
tension does not change stress derivatives at reference shapes x.
Energy E, then effectively adds weighting to elements with larger
distortion, to minimize them more. In turn, weighting for worst
elements increases as p grows large and so optimization approaches
the solution of min, max; ¥ (Fy).

m=p=1
m=p=10

8.5
|

10 15

SD 'SD Energy Value

| | mp=1
m=p=10
48 o]
f=4
« A m_ R
5 10 15
p=1 p=10 SD Energy Value

Fig. 18. Improving worst-case distortion for UV mapping. Minimizing
a p-norm regularized SD energy with p = 10, drives down worst-case dis-
tortion from a standard SD-optimized input. Starting with distortion above
15 (nearly 3X isotropic stretch/compression) IPD quickly drives distortion
to well below 6 (4 is isometric) while preserving injectivity.

3D—2D. Applying SD for distortion measure, ¥, we add the ex-
tended energy Ep, and barrier B to the IDP objective to improve maps.
In Figure 18 we take as input two SD-optimized maps produced
by OptCuts — a recent seam-cutting method from Li et al. [2018a].
While OptCuts minimizes over both seam placement and distortion
energy (average distortion in input is 4.1), worst-case distortion (see
Figure 18) in the input still reaches above 15 — nearly 3X isotropic
stretch/compression. Starting with these results as input and ap-
plying p = 10, IDP then drives worst-case distortion below 6 (4
is isometric) for both camel head (28K vertices in 12.9s) and hand
(23K vertices in 13.4s) models while preserving bijective maps. The
optimization is terminated after it first reaches a time step requiring
a single Newton iteration to converge.

2D. Min-max optimization can also be applied to for handle-
driven deformation. In Figure 19 we apply the same objective we
composed above for map improvement. The task now is to drive
four boundary handles of a 64K vertex disk (top, bottom, left and
right) inwards with both p = 10 and p = 1 (for baseline comparison).

Guaranteed Globally Injective 3D Deformation Processing « 75:11

* 10

18|

\/
-
>2 3 0 <>

Element Count

| A
44 !
SD () 107, 50 100
p=1 p=10 SD Energy Value

Fig. 19. 2D Min-Max Distortion Optimization. Minimizing distortion in
2D with a p-norm regularized SD energy we drive four boundary handles
of a disk inwards with both p = 10 and p = 1 (baseline).

Both solutions converge satisfying global injectivity and handle
targets. Direct optimization of the SD energy (p = 1) obtains a worst
case distortion of nearly 100, while with p = 10 we obtain improved
worst-case distortion with all triangles below 14. In terms of per-
formance, optimizing with high p-norm adds no overhead here (at
0.23min per time step) when compared direct SD minimization (at
0.3min per time step).

w13

uo
SD

p=1 SD Energy Value

Fig. 20. 3D Min-Max Distortion Optimization. minimizing distortion in
3D with p-norm regularized SD energy on tetrahedral elements, we fix the
center of a tetrahedral mesh cylinder and apply two bone handles (two
thin boxes of interior axis vertices) to bend it with both p =5and p =1
(baseline).

3D. Similarly in 3D, with the same energies in the objective, we
fix the center of a 22K vertex tetrahedral mesh cylinder and apply
two bone handles (two thin boxes of interior axis vertices) to bend
it; see Figure 20. With p = 5 worst case distortion drops to 30.29
from the max of 92.78 obtained with p = 1. In Figure 20 we can see
the subtle geometric differences resulting from the different stress
concentrations at the bend. Here, timing increases from 13.7min
to 22.2min for the 100 time steps optimized with p = 1and p =5
respectively.

7.5 Modeling and Layout

IDP enables modeling and layout of complex geometries directly
from primitive shapes, by emulating real-world manual steps with
handles. As demonstrations we follow rough “directions” to make
dumplings and a vase of decorative flowers. For our dumpling pro-
cess please follow along in Figure 1. With plasticity enabled (von-
Mises projection [Fang et al. 2019]), we first take a soft sphere
volume (NH energy) and squash it down with a translated rigid
plane to form a wrapper. Placing an ellipsoid (also NH volume) fill-
ing on top, we set handles along the outer two halfs of the wrapper.
Folding the handles inwards gives the basic dumpling shape. Next

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

75:12 .+ Fangetal

Fig. 21. A delicious dumpling layout combines our dumplings (Figure 1)
and our inflated 3D font art (Figure 14).

Fig. 22. A Flower arrangement layout is created by placing all modeled
flowers in a vase. Deformation and contact ensure the models naturally rest
against each other and the final vase geometry.

we pinch the dumpling with a simple symmetric motion of 8 rigid
ellipsoids. We finished the dumpling by squashing again around the
sealing with two more rigid cutouts. With our dumpling geometry
completed we can instance it and place it on plate. With deforma-
tion still enabled, despite each copied model being initially identical,
deformation and nudging give each dumpling a final unique shape
in the layout. See our video for our full modeling steps and our
supplemental materials for the final dumpling model.

With these illustrative steps as reference, we can next dive a
bit more into the details. Given the large shape changes (enabled
by the plastic deformation) our tetrahedral meshes can become
poorly-shaped after even a single modeling step. At the same time,
after each modeling application we have achieved a new shape
target that we may wish to keep. As discussed in Section 4 with
IDP we enable the option to “bake in” the current shape after any
time step (and so after any completed handle sequence). Here this
first applies surface-preserving remeshing [Si 2015] followed by a
simple reset of the reference mesh to the current modeled shape.
Each following stage of modeling then pulls towards the last until
the next baking operation is applied (e.g., after the next operation
is completed). Likewise, we find it useful to expose deformation
stiffness as a controllable parameter. For example here we found it
useful to make the “dough” stiffer (Y = 10°) when squashing and
then make it softer for finer detailing, for example when pinching
the creases (Y = 10%).

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

With this workflow in place we apply the same set of operations
(handle manipulation, baking, instancing, stiffness variation and
layout) to follow instructions for creating molded and folded flowers
in a vase. Please see Figures 2, 11 and 22 and our video for details of
the process, and our supplemental materials for the final modeled
geometries.

8 DISCUSSION

Timings and statistics for all applications, as well as for our bench-
mark tests, are summarized in our supplemental document. In it we
observe that where SCAF is able to make some progress, IDP pro-
vides both significantly improved deformation and comparable or
better timings. However, IDP’s key contribution is not in speed but in
its ability to provide high-quality, convergent, and interpenetration-
free deformations of 3D domains where this was not previously
possible with prior methods. As discussed, SCAF is prevented for
practical 3D applications by locking while (as discussed in Section
3) prior methods are unable to ensure non-interpenetration due
to reliance on iterative collision-response routines. While we look
forward to making IDP faster, we note that current timings range
from half a second (font inflation) up to a max of 12 minutes (for a
large mesh deformation) per frame. Timings vary as expected with
application (nonlinearity of terms in objective), severity of defor-
mation (as reflected in number of iterations required), mesh size
and constraints (contacts) processed. E.g., Dumpling Fold uses up
to 14K nodes, processes 5.7K constraints and requires 35 iterations
per frame, while Rose is 8K nodes, processes only 0.6K constraints
and requires only 5 iterations per frame.

8.1 A Note on Locking and Feasibility

The term locking is utilized in diverse ways across the literature.
Here we specifically apply it to broadly refer to artifacts that un-
duly restrict the deformation enabled by a computational mesh
(i.e. the primary triangulated or tetrahedralized domain), caused by
discretization applied to enforce global injectivity. Concretely, in
Section 6 we see that the SCAF method suffers from shear locking
where tetrahedra in the fictitious domain are severely sheared (even
after local remeshing) and so oppose deformation of the primary
mesh. This means that non-interpenetration in SCAF comes at the
cost of artificially restricting desired deformations and often even
(see Section 6) preventing them altogether.

We contrast this with feasibility which we describe as an intersection-

free (and, when desired, inversion-free) deformation of the mesh.
As discussed in Section 5.5, when a traversed deformation path can
not be continued due to infeasibility, IDP will not proceed. In many
applications not proceeding into intersection may be a desirable
result. While certainly in other applications it may not. For these
latter cases, enabling infeasible progress towards a final feasible
solution remains a challenging open problem.

9 CONCLUSION

Extending recent results in physical simulation we have developed
IDP, the first framework for robustly deforming in 3D with injectiv-
ity guarantees. We have performed extensive benchmark testing to
confirm IDP’s reliable behavior in practice, and have constructed

a wide range of applications demonstrating its utility. Here we see
opportunity for effectively endless further possibilities — of which
our current examples only scratch the surface. Looking ahead we
are excited to see what geometries users will be able to create with
IDP, and likewise what new applications it will be able to support.
To enable such future applications and extensions we will be re-
leasing our code for IDP. In terms of most immediate steps, while
in many applications IDP is able to create geometries rapidly and
certainly matches 3D SCAF in timings, much more remains to be
done in terms of speeding IDP’s time step computations. Much of
this is low level optimization, but algorithmic improvements in the
Newton stepper, for example leveraging efficient preconditioning
and aggressive tolerances should also be investigated. Likewise, we
have only begun in terms of both energies and operations that could
extend injective deformation processing further. Similarly, although
we have yet to find a need for it, automatic remeshing, based on
local mesh quality should be a useful and easy extension to support.
Likewise, topology change to enable cutting and seaming is also
another natural operation to investigate in future work. Finally, as
discussed, IDP cannot compute injectivity when starting from an
input geometry that does not have it. Extending injective deforma-
tion processing to find injectivity (with guarantees) for noninjective
initializers is an exciting and long-term direction of investigation.

ACKNOWLEDGMENTS

We thank Jacky (Jiecong) Lu for assistance in generating animation
sequences, Zhongshi Jiang for the SCAF library, and Etienne Vouga
and Tiantian Liu for valuable discussion. This work was supported in
part by NSF CAREER IIS-1943199, CCF-1813624, and ECCS-2023780.

REFERENCES

Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-rigid-as-possible shape
interpolation. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 157-164.

U.M. Ascher and LR. Petzold. 1998. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. SIAM.

David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Trans.
Graph. (TOG) 22, 3 (2003), 862-870.

Ilya Baran and Jaakko Lehtinen. 2009. Notes on Inflating Curves. (2009).

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-up: Shaping discrete geometry with projections. In Computer Graphics Forum,
Vol. 31. Wiley Online Library, 1657-1667.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans.
Graph. (TOG) 33, 4 (2014), 1-11.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques. 594-603.

Tyson Brochu and Robert Bridson. 2009. Robust topological operations for dynamic
explicit surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472-2493.
Thomas Buffet, Damien Rohmer, Loic Barthe, Laurence Boissieux, and Marie-Paule
Cani. 2019. Implicit untangling: a robust solution for modeling layered clothing.

ACM Trans. Graph. (TOG) 38, 4 (2019), 1-12.

Yanging Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Trans. on Math. Software (TOMS) 35, 3 (2008).

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.
Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.
(2020).

Fionn Dunne and Nik Petrinic. 2005. Introduction to computational plasticity. Oxford
University Press on Demand.

Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly rubber: an implicit material point
method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM
Trans. Graph. (TOG) 38, 4 (2019), 1-13.

Guaranteed Globally Injective 3D Deformation Processing « 75:13

M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized
interpolation material point method for simulating elastoplastic materials. ACM
Trans. Graph. (TOG) 36, 6 (2017), 223.

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schroder. 2003. Discrete
shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Citeseer, 62—67.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-
aware geometric modeling. ACM Trans. Graph. (TOG) 30, 6 (2011), 1-10.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust
treatment of simultaneous collisions. In ACM SIGGRAPH 2008 papers. 1-4.

Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible shape
manipulation. ACM Trans. Graph. (TOG) 24, 3 (2005), 1134-1141.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017).

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-scale
bounded distortion mappings. ACM Trans. Graph. (proceedings of ACM SIGGRAPH
Asia) 34, 6 (2015).

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. (SIGGRAPH 2016) (2016).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.
Graph. 39, 4 (2020).

Minchen Li, Danny M Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental
Potential Contact. ACM Trans. Graph. (TOG) 40, 4 (2021).

Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer.
2018a. Optcuts: joint optimization of surface cuts and parameterization. ACM Trans.
Graph. (TOG) 37, 6 (2018), 1-13.

Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018b. FoldSketch:
Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph. (TOG)
37,4 (2018). https://doi.org/10.1145/3197517.3201310

Marek Krzysztof Misztal and Jakob Andreas Baerentzen. 2012. Topology-Adaptive
Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
(2012).

Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu Desbrun. 2007. A
variational approach to Eulerian geometry processing. ACM Trans. Graph. (TOG)
26, 3 (2007), 66—es.

Matthias Miiller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
meshes for robust collision handling. ACM Trans. Graph. (TOG) 34, 4 (2015), 1-9.

Raymond W Ogden. 1997. Non-linear elastic deformations. Courier Corporation.

Stéphane Pagano and Pierre Alart. 2008. Self-contact and fictitious domain using a
difference convex approach. Int. J. for Numer. Meth. in Eng. 75 (07 2008).

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Trans.
Graph. (TOG) 34, 6 (2015), 1-14.

Christian Schiiller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally injective mappings. In Computer Graphics Forum, Vol. 32. Wiley Online
Library, 125-135.

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1-36.

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Trans. Graph. (TOG) 34, 4 (2015), 1-9.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Sympo-
sium on Geometry processing, Vol. 4. 109-116.

Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient bijective
parameterizations. ACM Trans. Graph. (TOG) 39, 4 (2020), 111-1.

Pascal Volino and Nadia Magnenat-Thalmann. 2006. Resolving surface collisions
through intersection contour minimization. ACM Trans. Graph. (TOG) 25, 3 (2006).

Martin Wicke, Hermes Lanker, and Markus Gross. 2006. Untangling cloth with bound-
aries. In Proc. of Vision, Modeling, and Visualization. 349-356.

Audrey Wong, David Eberle, and Theodore Kim. 2018. Clean cloth inputs: Removing
character self-intersections with volume simulation. In ACM SIGGRAPH 2018 Talks.

Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang Xiong, Xiaopeng Zhang,
and Min Tang. 2017. A unified cloth untangling framework through discrete collision
detection. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 217-228.

Juntao Ye, Timo R Nyberg, and Gang Xiong. 2015. Fast discrete intersection detection
for cloth penetration resolution. In 2015 IEEE International Conference on Multimedia
Big Data. IEEE, 352-357.

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-
Newton for Distortion Optimization. ACM Trans. Graph. (SSGGRAPH 2018) (2018).

ACM Trans. Graph., Vol. 40, No. 4, Article 75. Publication date: August 2021.

https://doi.org/10.1145/3197517.3201310

	Abstract
	1 Introduction
	1.1 Contributions

	2 Problem Statement
	3 Related Work
	4 Method
	4.1 Artificial Time Stepping
	4.2 IPC Barrier Energies
	4.3 Boundary Conditions
	4.4 Energies
	4.5 Time-Varying Conditions

	5 IDP Framework
	5.1 Time Step Size
	5.2 Setting Distance Accuracy
	5.3 Guarantees
	5.4 Tolerance
	5.5 Restrictions
	5.6 Summary

	6 Benchmark
	7 Applications
	7.1 Sparse Handle Deformation
	7.2 Normal Flow
	7.3 Animation Repair
	7.4 Min-Max Distortion Optimization
	7.5 Modeling and Layout

	8 Discussion
	8.1 A Note on Locking and Feasibility

	9 Conclusion
	Acknowledgments
	References

